| |||||||
ShanghaiTech University Knowledge Management System
Transfer learning improves predictions in lignin content of Chinese fir based on Raman spectra | |
2024-06 | |
发表期刊 | INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (IF:7.7[JCR-2023],7.7[5-Year]) |
ISSN | 0141-8130 |
EISSN | 1879-0003 |
卷号 | 269 |
发表状态 | 已发表 |
DOI | 10.1016/j.ijbiomac.2024.132147 |
摘要 | Lignin in biomass plays significant role in substitution of synthetic polymer and reduction of energy expenditure, and the lignin content was usually determined by wet chemical methods. However, the methods' heavy workload, low efficiency, huge consumption of chemicals and use of toxic reagents render them unsuitable for sustainable development and environmental protection. Chinese fir, a prevalent angiosperm tree, holds immense importance for various industries. Since our previous work found that Raman spectroscopy could accurately predict the lignin content in poplar, we propose that the lignin content of Chinese fir can be estimated by similar strategy. The results suggested that the peak at 2895 cm−1 is the optimal choice of internal standard peak and algorithm of XGBoost demonstrates the highest accuracy among all algorithms. Furthermore, transfer learning was successfully introduced to enhance the accuracy and robustness of the model. Ultimately, we report that a machine learning algorithm, combining transfer learning with XGBoost or LightGBM, offers an accurate, high-efficiency and environmental friendly method for predicting the lignin content of Chinese fir using Raman spectra. © 2024 Elsevier B.V. |
关键词 | Environmental protection Forecasting Learning algorithms Lignin Machine learning Sustainable development % reductions Chinese fir Energy expenditure Heavy workloads Lignin contents Machine-learning Synthetic polymers Toxic reagents Transfer learning Wet-chemical method |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program[2023YFD2200501] |
WOS研究方向 | Biochemistry & Molecular Biology ; Chemistry ; Polymer Science |
WOS类目 | Biochemistry & Molecular Biology ; Chemistry, Applied ; Polymer Science |
WOS记录号 | WOS:001242141200001 |
出版者 | Elsevier B.V. |
EI入藏号 | 20242016075732 |
EI主题词 | Raman scattering |
EI分类号 | 454.2 Environmental Impact and Protection ; 723.4 Artificial Intelligence ; 723.4.2 Machine Learning ; 741.1 Light/Optics ; 811.3 Cellulose, Lignin and Derivatives |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/381440 |
专题 | 物质科学与技术学院 物质科学与技术学院_PI研究组_凌盛杰组 |
通讯作者 | Ling, Shengjie; Zhou, Liang |
作者单位 | 1.School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai; 201210, China 2.Bozhou University, 2266 Tangwang Avenue, Bozhou; 236800, China 3.Key Lab of State Forest and Grassland Administration of Wood Quality Improvement & Utilization, Anhui, Hefei; 230036, China 4.School of Material Science and Chemistry, Anhui Agricultural University, Anhui, Hefei; 230036, China 5.State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, Hangzhou; 311300, China 6.Shanghai Clinical Research and Trial Center, Shanghai; 201210, China 7.State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院; 上海科技大学 |
第一作者的第一单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Gao, Wenli,Jiang, Qianqian,Guan, Ying,et al. Transfer learning improves predictions in lignin content of Chinese fir based on Raman spectra[J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES,2024,269. |
APA | Gao, Wenli.,Jiang, Qianqian.,Guan, Ying.,Huang, Huahong.,Liu, Shengquan.,...&Zhou, Liang.(2024).Transfer learning improves predictions in lignin content of Chinese fir based on Raman spectra.INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES,269. |
MLA | Gao, Wenli,et al."Transfer learning improves predictions in lignin content of Chinese fir based on Raman spectra".INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES 269(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。