消息
×
loading..
Transfer learning improves predictions in lignin content of Chinese fir based on Raman spectra
2024-06
发表期刊INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES (IF:7.7[JCR-2023],7.7[5-Year])
ISSN0141-8130
EISSN1879-0003
卷号269
发表状态已发表
DOI10.1016/j.ijbiomac.2024.132147
摘要

Lignin in biomass plays significant role in substitution of synthetic polymer and reduction of energy expenditure, and the lignin content was usually determined by wet chemical methods. However, the methods' heavy workload, low efficiency, huge consumption of chemicals and use of toxic reagents render them unsuitable for sustainable development and environmental protection. Chinese fir, a prevalent angiosperm tree, holds immense importance for various industries. Since our previous work found that Raman spectroscopy could accurately predict the lignin content in poplar, we propose that the lignin content of Chinese fir can be estimated by similar strategy. The results suggested that the peak at 2895 cm−1 is the optimal choice of internal standard peak and algorithm of XGBoost demonstrates the highest accuracy among all algorithms. Furthermore, transfer learning was successfully introduced to enhance the accuracy and robustness of the model. Ultimately, we report that a machine learning algorithm, combining transfer learning with XGBoost or LightGBM, offers an accurate, high-efficiency and environmental friendly method for predicting the lignin content of Chinese fir using Raman spectra. © 2024 Elsevier B.V.

关键词Environmental protection Forecasting Learning algorithms Lignin Machine learning Sustainable development % reductions Chinese fir Energy expenditure Heavy workloads Lignin contents Machine-learning Synthetic polymers Toxic reagents Transfer learning Wet-chemical method
URL查看原文
收录类别EI ; SCI
语种英语
资助项目National Key Research and Development Program[2023YFD2200501]
WOS研究方向Biochemistry & Molecular Biology ; Chemistry ; Polymer Science
WOS类目Biochemistry & Molecular Biology ; Chemistry, Applied ; Polymer Science
WOS记录号WOS:001242141200001
出版者Elsevier B.V.
EI入藏号20242016075732
EI主题词Raman scattering
EI分类号454.2 Environmental Impact and Protection ; 723.4 Artificial Intelligence ; 723.4.2 Machine Learning ; 741.1 Light/Optics ; 811.3 Cellulose, Lignin and Derivatives
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/381440
专题物质科学与技术学院
物质科学与技术学院_PI研究组_凌盛杰组
通讯作者Ling, Shengjie; Zhou, Liang
作者单位
1.School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai; 201210, China
2.Bozhou University, 2266 Tangwang Avenue, Bozhou; 236800, China
3.Key Lab of State Forest and Grassland Administration of Wood Quality Improvement & Utilization, Anhui, Hefei; 230036, China
4.School of Material Science and Chemistry, Anhui Agricultural University, Anhui, Hefei; 230036, China
5.State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, Hangzhou; 311300, China
6.Shanghai Clinical Research and Trial Center, Shanghai; 201210, China
7.State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai; 201210, China
第一作者单位物质科学与技术学院
通讯作者单位物质科学与技术学院;  上海科技大学
第一作者的第一单位物质科学与技术学院
推荐引用方式
GB/T 7714
Gao, Wenli,Jiang, Qianqian,Guan, Ying,et al. Transfer learning improves predictions in lignin content of Chinese fir based on Raman spectra[J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES,2024,269.
APA Gao, Wenli.,Jiang, Qianqian.,Guan, Ying.,Huang, Huahong.,Liu, Shengquan.,...&Zhou, Liang.(2024).Transfer learning improves predictions in lignin content of Chinese fir based on Raman spectra.INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES,269.
MLA Gao, Wenli,et al."Transfer learning improves predictions in lignin content of Chinese fir based on Raman spectra".INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES 269(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Gao, Wenli]的文章
[Jiang, Qianqian]的文章
[Guan, Ying]的文章
百度学术
百度学术中相似的文章
[Gao, Wenli]的文章
[Jiang, Qianqian]的文章
[Guan, Ying]的文章
必应学术
必应学术中相似的文章
[Gao, Wenli]的文章
[Jiang, Qianqian]的文章
[Guan, Ying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。