Reducing overconfident errors in molecular property classification using Posterior Network
2024
发表期刊PATTERNS (IF:6.7[JCR-2023],6.6[5-Year])
ISSN2666-3899
EISSN2666-3899
卷号5期号:6
发表状态已发表
DOI10.1016/j.patter.2024.100991
摘要

Deep-learning-based classification models are increasingly used for predicting molecular properties in drug development. However, traditional classification models using the Softmax function often give overconfident mispredictions for out-of-distribution samples, highlighting a critical lack of accurate uncertainty estimation. Such limitations can result in substantial costs and should be avoided during drug development. Inspired by advances in evidential deep learning and Posterior Network, we replaced the Softmax function with a normalizing flow to enhance the uncertainty estimation ability of the model in molecular property classification. The proposed strategy was evaluated across diverse scenarios, including simulated experiments based on a synthetic dataset, ADMET predictions, and ligand-based virtual screening. The results demonstrate that compared with the vanilla model, the proposed strategy effectively alleviates the problem of giving overconfident but incorrect predictions. Our findings support the promising application of evidential deep learning in drug development and offer a valuable framework for further research. © 2024 The Author(s)

关键词Computational chemistry Deep learning Drug products Artificial intelligence-aided drug design Classification models Drug Design Drug development Molecular properties Property classification QSAR Trustworthy AI Uncertainty estimation Uncertainty quantifications
收录类别EI
语种英语
出版者Cell Press
EI入藏号20242116140409
EI主题词Forecasting
EI分类号461.4 Ergonomics and Human Factors Engineering ; 801 Chemistry ; 921.6 Numerical Methods
原始文献类型Article in Press
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/381438
专题物质科学与技术学院
物质科学与技术学院_博士生
通讯作者Zheng, Mingyue; Luo, Xiaomin; Wang, Dingyan
作者单位
1.Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai; 201203, China
2.University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing; 100049, China
3.School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing; 210023, China
4.School of Physical Science and Technology, ShanghaiTech University, Shanghai; 201210, China
5.Lingang Laboratory, Shanghai; 200031, China
推荐引用方式
GB/T 7714
Fan, Zhehuan,Yu, Jie,Zhang, Xiang,et al. Reducing overconfident errors in molecular property classification using Posterior Network[J]. PATTERNS,2024,5(6).
APA Fan, Zhehuan.,Yu, Jie.,Zhang, Xiang.,Chen, Yijie.,Sun, Shihui.,...&Wang, Dingyan.(2024).Reducing overconfident errors in molecular property classification using Posterior Network.PATTERNS,5(6).
MLA Fan, Zhehuan,et al."Reducing overconfident errors in molecular property classification using Posterior Network".PATTERNS 5.6(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Zhehuan]的文章
[Yu, Jie]的文章
[Zhang, Xiang]的文章
百度学术
百度学术中相似的文章
[Fan, Zhehuan]的文章
[Yu, Jie]的文章
[Zhang, Xiang]的文章
必应学术
必应学术中相似的文章
[Fan, Zhehuan]的文章
[Yu, Jie]的文章
[Zhang, Xiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。