ShanghaiTech University Knowledge Management System
Reducing overconfident errors in molecular property classification using Posterior Network | |
2024 | |
发表期刊 | PATTERNS (IF:6.7[JCR-2023],6.6[5-Year]) |
ISSN | 2666-3899 |
EISSN | 2666-3899 |
卷号 | 5期号:6 |
发表状态 | 已发表 |
DOI | 10.1016/j.patter.2024.100991 |
摘要 | Deep-learning-based classification models are increasingly used for predicting molecular properties in drug development. However, traditional classification models using the Softmax function often give overconfident mispredictions for out-of-distribution samples, highlighting a critical lack of accurate uncertainty estimation. Such limitations can result in substantial costs and should be avoided during drug development. Inspired by advances in evidential deep learning and Posterior Network, we replaced the Softmax function with a normalizing flow to enhance the uncertainty estimation ability of the model in molecular property classification. The proposed strategy was evaluated across diverse scenarios, including simulated experiments based on a synthetic dataset, ADMET predictions, and ligand-based virtual screening. The results demonstrate that compared with the vanilla model, the proposed strategy effectively alleviates the problem of giving overconfident but incorrect predictions. Our findings support the promising application of evidential deep learning in drug development and offer a valuable framework for further research. © 2024 The Author(s) |
关键词 | Computational chemistry Deep learning Drug products Artificial intelligence-aided drug design Classification models Drug Design Drug development Molecular properties Property classification QSAR Trustworthy AI Uncertainty estimation Uncertainty quantifications |
收录类别 | EI |
语种 | 英语 |
出版者 | Cell Press |
EI入藏号 | 20242116140409 |
EI主题词 | Forecasting |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 801 Chemistry ; 921.6 Numerical Methods |
原始文献类型 | Article in Press |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/381438 |
专题 | 物质科学与技术学院 物质科学与技术学院_博士生 |
通讯作者 | Zheng, Mingyue; Luo, Xiaomin; Wang, Dingyan |
作者单位 | 1.Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai; 201203, China 2.University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing; 100049, China 3.School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing; 210023, China 4.School of Physical Science and Technology, ShanghaiTech University, Shanghai; 201210, China 5.Lingang Laboratory, Shanghai; 200031, China |
推荐引用方式 GB/T 7714 | Fan, Zhehuan,Yu, Jie,Zhang, Xiang,et al. Reducing overconfident errors in molecular property classification using Posterior Network[J]. PATTERNS,2024,5(6). |
APA | Fan, Zhehuan.,Yu, Jie.,Zhang, Xiang.,Chen, Yijie.,Sun, Shihui.,...&Wang, Dingyan.(2024).Reducing overconfident errors in molecular property classification using Posterior Network.PATTERNS,5(6). |
MLA | Fan, Zhehuan,et al."Reducing overconfident errors in molecular property classification using Posterior Network".PATTERNS 5.6(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。