消息
×
loading..
Taylor3DNet: Fast 3D Shape Inference With Landmark Points Based Taylor Series
2023-07-16
状态已发表
摘要

Benefiting from the continuous representation ability, deep implicit functions can represent a shape at infinite resolution. However, extracting high-resolution iso-surface from an implicit function requires forward-propagating a network with a large number of parameters for numerous query points, thus preventing the generation speed. Inspired by the Taylor series, we propose Taylo3DNet to acceler-ate the inference of implicit shape representations. Tay-lor3DNet exploits a set of discrete landmark points and their corresponding Taylor series coefficients to represent the implicit field of a 3D shape, and the number of landmark points is independent of the resolution of the iso-surface ex-traction. Once the coefficients corresponding to the land-mark points are predicted, the network evaluation for each query point can be simplified as a low-order Taylor series calculation with several nearest landmark points. Based on this efficient representation, our Taylor3DNet achieves a significantly faster inference speed than classical network-based implicit functions. We evaluate our approach on re-construction tasks with various input types, and the results demonstrate that our approach can improve the inference speed by a large margin without sacrificing the performance compared with state-of-the-art baselines.

DOIarXiv:2201.06845
相关网址查看原文
出处Arxiv
WOS记录号PPRN:73954938
WOS类目Computer Science, Software Engineering
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/381391
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_高盛华组
通讯作者Gao, Shenghua
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
3.Shanghai Engn Res Ctr Energy Efficient & Custom AI IC, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Xiao, Yuting,Xu, Jiale,Gao, Shenghua. Taylor3DNet: Fast 3D Shape Inference With Landmark Points Based Taylor Series. 2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xiao, Yuting]的文章
[Xu, Jiale]的文章
[Gao, Shenghua]的文章
百度学术
百度学术中相似的文章
[Xiao, Yuting]的文章
[Xu, Jiale]的文章
[Gao, Shenghua]的文章
必应学术
必应学术中相似的文章
[Xiao, Yuting]的文章
[Xu, Jiale]的文章
[Gao, Shenghua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。