Kurdyka-L ojasiewicz exponent via Hadamard parametrization
2024-02-01
状态已发表
摘要

We consider a class of l1 -regularized optimization problems and the associated smooth “over -parameterized” optimization problems built upon the Hadamard parametrization, or equivalently, the Hadamard difference parametrization (HDP). We characterize the set of second -order stationary points of the HDP-based model and show that they correspond to some stationary points of the corresponding l1 -regularized model. More importantly, we show that the Kurdyka- Lojasiewicz (KL) exponent of the HDP-based model at a second -order stationary point can be inferred from that of the corresponding l1 -regularized model under suitable assumptions. Our assumptions are general enough to cover a wide variety of loss functions commonly used in l1 -regularized models, such as the least squares loss function and the logistic loss function. Since the KL exponents of many l1 -regularized models are explicitly known in the literature, our results allow us to leverage these known exponents to deduce the KL exponents at second -order stationary points of the corresponding HDP-based models, which were previously unknown. Finally, we demonstrate how these explicit KL exponents at second -order stationary points can be applied to deducing the explicit local convergence rate of a standard gradient descent method for solving the HDP-based model.

关键词Kurdyka- Lojasiewicz exponent over-parametrization second-order stationarity strict saddle property
DOIarXiv:2402.00377
相关网址查看原文
出处Arxiv
WOS记录号PPRN:87456574
WOS类目Mathematics
资助项目Natural Science Foundation of Sichuan Province[
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/381348
专题信息科学与技术学院
信息科学与技术学院_PI研究组_王浩组
通讯作者Ouyang, Wenqing
作者单位
1.Chinese Univ Hong Kong, Shenzhen Res Inst Big Data SRIBD, Sch Data Sci SDS, Shenzhen, Peoples R China
2.Southwest Minzu Univ, Sch Math, Chengdu, Sichuan, Peoples R China
3.Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
4.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Ouyang, Wenqing,Liu, Yuncheng,Pong, Ting Kei,et al. Kurdyka-L ojasiewicz exponent via Hadamard parametrization. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ouyang, Wenqing]的文章
[Liu, Yuncheng]的文章
[Pong, Ting Kei]的文章
百度学术
百度学术中相似的文章
[Ouyang, Wenqing]的文章
[Liu, Yuncheng]的文章
[Pong, Ting Kei]的文章
必应学术
必应学术中相似的文章
[Ouyang, Wenqing]的文章
[Liu, Yuncheng]的文章
[Pong, Ting Kei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。