ShanghaiTech University Knowledge Management System
Low-Rank Gradient Compression with Error Feedback for MIMO Wireless Federated Learning | |
2024-01-15 | |
状态 | 已发表 |
摘要 | This paper presents a novel approach to enhance the communication efficiency of federated learning (FL) in multiple input and multiple output (MIMO) wireless systems. The proposed method centers on a low-rank matrix factorization strategy for local gradient compression based on alternating least squares, along with over-the-air computation and error feedback. The proposed protocol, termed over-the-air low-rank compression (Ota-LC), is demonstrated to have lower computation cost and lower communication overhead as compared to existing benchmarks while guaranteeing the same inference performance. As an example, when targeting a test accuracy of 80% on the Cifar-10 dataset, Ota-LC achieves a reduction in total communication costs of at least 30% when contrasted with benchmark schemes, while also reducing the computational complexity order by a factor equal to the sum of the dimension of the gradients. |
关键词 | Wireless federated learning gradient factorization over-the-air computation MIMO |
DOI | arXiv:2401.07496 |
相关网址 | 查看原文 |
出处 | Arxiv |
WOS记录号 | PPRN:87194658 |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical& Electronic ; Mathematics |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/381325 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_文鼎柱组 |
通讯作者 | Guo, Mingzhao |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.Univ Glasgow, Sch Comp Sci, Glasgow, Scotland 3.Kings Coll London, Dept Engn, London, England |
推荐引用方式 GB/T 7714 | Guo, Mingzhao,Liu, Dongzhu,Simeone, Osvaldo,et al. Low-Rank Gradient Compression with Error Feedback for MIMO Wireless Federated Learning. 2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。