Low-Rank Gradient Compression with Error Feedback for MIMO Wireless Federated Learning
2024-01-15
状态已发表
摘要

This paper presents a novel approach to enhance the communication efficiency of federated learning (FL) in multiple input and multiple output (MIMO) wireless systems. The proposed method centers on a low-rank matrix factorization strategy for local gradient compression based on alternating least squares, along with over-the-air computation and error feedback. The proposed protocol, termed over-the-air low-rank compression (Ota-LC), is demonstrated to have lower computation cost and lower communication overhead as compared to existing benchmarks while guaranteeing the same inference performance. As an example, when targeting a test accuracy of 80% on the Cifar-10 dataset, Ota-LC achieves a reduction in total communication costs of at least 30% when contrasted with benchmark schemes, while also reducing the computational complexity order by a factor equal to the sum of the dimension of the gradients.

关键词Wireless federated learning gradient factorization over-the-air computation MIMO
DOIarXiv:2401.07496
相关网址查看原文
出处Arxiv
WOS记录号PPRN:87194658
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical& Electronic ; Mathematics
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/381325
专题信息科学与技术学院
信息科学与技术学院_PI研究组_文鼎柱组
通讯作者Guo, Mingzhao
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.Univ Glasgow, Sch Comp Sci, Glasgow, Scotland
3.Kings Coll London, Dept Engn, London, England
推荐引用方式
GB/T 7714
Guo, Mingzhao,Liu, Dongzhu,Simeone, Osvaldo,et al. Low-Rank Gradient Compression with Error Feedback for MIMO Wireless Federated Learning. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Guo, Mingzhao]的文章
[Liu, Dongzhu]的文章
[Simeone, Osvaldo]的文章
百度学术
百度学术中相似的文章
[Guo, Mingzhao]的文章
[Liu, Dongzhu]的文章
[Simeone, Osvaldo]的文章
必应学术
必应学术中相似的文章
[Guo, Mingzhao]的文章
[Liu, Dongzhu]的文章
[Simeone, Osvaldo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。