ShanghaiTech University Knowledge Management System
Scalable Hybrid Beamforming for Multi-User MISO Systems: A Graph Neural Network Approach | |
2024 | |
发表期刊 | IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year]) |
ISSN | 1558-2248 |
EISSN | 1558-2248 |
卷号 | PP期号:99页码:1-1 |
发表状态 | 已发表 |
DOI | 10.1109/TWC.2024.3403989 |
摘要 | Hybrid beamforming is a promising technology for enhancing the energy- and spectral-efficiency of wireless networks with large-scale antenna arrays, yet the current designs fall short of concurrently achieving low computational complexity and high communication scalability. In this paper, we propose a scalable and effective hybrid beamforming framework for multi-user systems, where the bipartite graph neural network (BGNN) is leveraged to exploit the graph topological structure for sum-rate maximization. To capture permutation properties of the sum-rate maximization problem, we model the wireless network as a bipartite graph, where two disjoint sets of vertices respectively model users and radio frequency (RF) chains, and the edges connecting adjacent vertices characterize interactions between users and RF chains. Based on the bipartite graph, we partition the hybrid beamforming optimization into the updates of feature vectors at user and RF chain vertices, which are realized by alternately activating four kinds of vertex operators that constitute the proposed BGNN. The inputs and outputs of each vertex operator are specifically designed to be independent of the user number and RF chain number in terms of dimension. Numerical results validate the superiority of the proposed BGNN framework from the perspectives of achievable sum rate, computation complexity, and scalability. |
关键词 | Array processing Beam forming networks Beamforming Chains Complex networks Computer architecture Graph theory Network architecture Radio waves Spectrum efficiency Wireless networks Array signal processing Bipartite graph neural network Bipartite graphs Graph neural networks Hybrid beamforming Multiuser communication Radio frequency chains Radiofrequencies Sum-rate maximizations |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20242316204888 |
EI主题词 | Scalability |
EI分类号 | 602.1 Mechanical Drives ; 711 Electromagnetic Waves ; 711.2 Electromagnetic Waves in Relation to Various Structures ; 716 Telecommunication ; Radar, Radio and Television ; 716.3 Radio Systems and Equipment ; 722 Computer Systems and Equipment ; 722.3 Data Communication, Equipment and Techniques ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory ; 961 Systems Science |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/381246 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Department of ECE, Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Shaojun Wan,Zixin Wang,Yong Zhou. Scalable Hybrid Beamforming for Multi-User MISO Systems: A Graph Neural Network Approach[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2024,PP(99):1-1. |
APA | Shaojun Wan,Zixin Wang,&Yong Zhou.(2024).Scalable Hybrid Beamforming for Multi-User MISO Systems: A Graph Neural Network Approach.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,PP(99),1-1. |
MLA | Shaojun Wan,et al."Scalable Hybrid Beamforming for Multi-User MISO Systems: A Graph Neural Network Approach".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS PP.99(2024):1-1. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。