消息
×
loading..
ESatSR: Enhancing Super-Resolution for Satellite Remote Sensing Images with State Space Model and Spatial Context
2024-05-29
发表期刊REMOTE SENSING (IF:4.2[JCR-2023],4.9[5-Year])
ISSN2072-4292
EISSN2072-4292
卷号16期号:11
发表状态已发表
DOI10.3390/rs16111956
摘要

Super-resolution (SR) for satellite remote sensing images has been recognized as crucial and has found widespread applications across various scenarios. Previous SR methods were usually built upon Convolutional Neural Networks and Transformers, which suffer from either limited receptive fields or a lack of prior assumptions. To address these issues, we propose ESatSR, a novel SR method based on state space models. We utilize the 2D Selective Scan to obtain an enhanced capability in modeling long-range dependencies, which contributes to a wide receptive field. A Spatial Context Interaction Module (SCIM) and an Enhanced Image Reconstruction Module (EIRM) are introduced to combine image-related prior knowledge into our model, therefore guiding the process of feature extraction and reconstruction. Tailored for remote sensing images, the interaction of multi-scale spatial context and image features is leveraged to enhance the network’s capability in capturing features of small targets. Comprehensive experiments show that ESatSR demonstrates state-of-the-art performance on both OLI2MSI and RSSCN7 datasets, with the highest PSNRs of 42.11 dB and 31.42 dB, respectively. Extensive ablation studies illustrate the effectiveness of our module design.

关键词image super-resolution remote sensing state space model prior assumption
学科门类工学
URL查看原文
收录类别SCI ; EI
语种英语
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001245850200001
出版者Multidisciplinary Digital Publishing Institute (MDPI)
EI入藏号20242416256929
EI主题词Remote sensing
EI分类号741.1 Light/Optics ; 921 Mathematics
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/378362
专题信息科学与技术学院_硕士生
信息科学与技术学院_特聘教授组_林宝军组
共同第一作者Yinxiao Wang; Fang Xie
通讯作者Baojun Lin
作者单位
1.School of Information Science and Technology, ShanghaiTech University
2.Innovation Academy for Microsatellites, Chinese Academy of Sciences
3.College of Biomedical Engineering, Sichuan University
4.School of Optoelectronics, University of Chinese Academy of Sciences
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yinxiao Wang,Wei Yuan,Fang Xie,et al. ESatSR: Enhancing Super-Resolution for Satellite Remote Sensing Images with State Space Model and Spatial Context[J]. REMOTE SENSING,2024,16(11).
APA Yinxiao Wang,Wei Yuan,Fang Xie,&Baojun Lin.(2024).ESatSR: Enhancing Super-Resolution for Satellite Remote Sensing Images with State Space Model and Spatial Context.REMOTE SENSING,16(11).
MLA Yinxiao Wang,et al."ESatSR: Enhancing Super-Resolution for Satellite Remote Sensing Images with State Space Model and Spatial Context".REMOTE SENSING 16.11(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yinxiao Wang]的文章
[Wei Yuan]的文章
[Fang Xie]的文章
百度学术
百度学术中相似的文章
[Yinxiao Wang]的文章
[Wei Yuan]的文章
[Fang Xie]的文章
必应学术
必应学术中相似的文章
[Yinxiao Wang]的文章
[Wei Yuan]的文章
[Fang Xie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。