| |||||||
ShanghaiTech University Knowledge Management System
ESatSR: Enhancing Super-Resolution for Satellite Remote Sensing Images with State Space Model and Spatial Context | |
2024-05-29 | |
发表期刊 | REMOTE SENSING (IF:4.2[JCR-2023],4.9[5-Year]) |
ISSN | 2072-4292 |
EISSN | 2072-4292 |
卷号 | 16期号:11 |
发表状态 | 已发表 |
DOI | 10.3390/rs16111956 |
摘要 | Super-resolution (SR) for satellite remote sensing images has been recognized as crucial and has found widespread applications across various scenarios. Previous SR methods were usually built upon Convolutional Neural Networks and Transformers, which suffer from either limited receptive fields or a lack of prior assumptions. To address these issues, we propose ESatSR, a novel SR method based on state space models. We utilize the 2D Selective Scan to obtain an enhanced capability in modeling long-range dependencies, which contributes to a wide receptive field. A Spatial Context Interaction Module (SCIM) and an Enhanced Image Reconstruction Module (EIRM) are introduced to combine image-related prior knowledge into our model, therefore guiding the process of feature extraction and reconstruction. Tailored for remote sensing images, the interaction of multi-scale spatial context and image features is leveraged to enhance the network’s capability in capturing features of small targets. Comprehensive experiments show that ESatSR demonstrates state-of-the-art performance on both OLI2MSI and RSSCN7 datasets, with the highest PSNRs of 42.11 dB and 31.42 dB, respectively. Extensive ablation studies illustrate the effectiveness of our module design. |
关键词 | image super-resolution remote sensing state space model prior assumption |
学科门类 | 工学 |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:001245850200001 |
出版者 | Multidisciplinary Digital Publishing Institute (MDPI) |
EI入藏号 | 20242416256929 |
EI主题词 | Remote sensing |
EI分类号 | 741.1 Light/Optics ; 921 Mathematics |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/378362 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_特聘教授组_林宝军组 |
共同第一作者 | Yinxiao Wang; Fang Xie |
通讯作者 | Baojun Lin |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University 2.Innovation Academy for Microsatellites, Chinese Academy of Sciences 3.College of Biomedical Engineering, Sichuan University 4.School of Optoelectronics, University of Chinese Academy of Sciences |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yinxiao Wang,Wei Yuan,Fang Xie,et al. ESatSR: Enhancing Super-Resolution for Satellite Remote Sensing Images with State Space Model and Spatial Context[J]. REMOTE SENSING,2024,16(11). |
APA | Yinxiao Wang,Wei Yuan,Fang Xie,&Baojun Lin.(2024).ESatSR: Enhancing Super-Resolution for Satellite Remote Sensing Images with State Space Model and Spatial Context.REMOTE SENSING,16(11). |
MLA | Yinxiao Wang,et al."ESatSR: Enhancing Super-Resolution for Satellite Remote Sensing Images with State Space Model and Spatial Context".REMOTE SENSING 16.11(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yinxiao Wang]的文章 |
[Wei Yuan]的文章 |
[Fang Xie]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yinxiao Wang]的文章 |
[Wei Yuan]的文章 |
[Fang Xie]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yinxiao Wang]的文章 |
[Wei Yuan]的文章 |
[Fang Xie]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。