ShanghaiTech University Knowledge Management System
KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning | |
2024-05-01 | |
发表期刊 | NUCLEIC ACIDS RESEARCH (IF:16.6[JCR-2023],16.1[5-Year]) |
ISSN | 0305-1048 |
EISSN | 1362-4962 |
发表状态 | 已发表 |
DOI | 10.1093/nar/gkae380 |
摘要 | ["Kinase-targeted inhibitors hold promise for new therapeutic options, with multi-target inhibitors offering the potential for broader efficacy while minimizing polypharmacology risks. However, comprehensive experimental profiling of kinome-wide activity is expensive, and existing computational approaches often lack scalability or accuracy for understudied kinases. We introduce KinomeMETA, an artificial intelligence (AI)-powered web platform that significantly expands the predictive range with scalability for predicting the polypharmacological effects of small molecules across the kinome. By leveraging a novel meta-learning algorithm, KinomeMETA efficiently utilizes sparse activity data, enabling rapid generalization to new kinase tasks even with limited information. This significantly expands the repertoire of accurately predictable kinases to 661 wild-type and clinically-relevant mutant kinases, far exceeding existing methods. Additionally, KinomeMETA empowers users to customize models with their proprietary data for specific research needs. Case studies demonstrate its ability to discover new active compounds by quickly adapting to small dataset. Overall, KinomeMETA offers enhanced kinome virtual profiling capabilities and is positioned as a powerful tool for developing new kinase inhibitors and advancing kinase research. The KinomeMETA server is freely accessible without registration at https://kinomemeta.alphama.com.cn/.","Graphical Abstract"] |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[ |
WOS研究方向 | Biochemistry & Molecular Biology |
WOS类目 | Biochemistry & Molecular Biology |
WOS记录号 | WOS:001223716000001 |
出版者 | OXFORD UNIV PRESS |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/378308 |
专题 | 物质科学与技术学院 物质科学与技术学院_博士生 |
共同第一作者 | Qu, Ning; Zhou, Jingyi |
通讯作者 | Zhang, Sulin; Zheng, Mingyue; Li, Xutong |
作者单位 | 1.Dezhou Univ, Coll Comp & Informat Engn, Dezhou 253023, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Materia Med, State Key Lab Drug Res, Drug Discovery & Design Ctr, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China 3.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China 4.Suzhou Alphama Biotechnol Co Ltd, Dev Dept, Suzhou 215000, Peoples R China 5.Shanghaitech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China 6.Lingang Lab, Shanghai 200031, Peoples R China 7.Nanjing Univ Chinese Med, Sch Chinese Materia Med, 138 Xianlin Rd, Nanjing 210023, Peoples R China 8.Zhejiang Univ, Coll Pharmaceut Sci, Hangzhou 310058, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Zhaojun,Qu, Ning,Zhou, Jingyi,et al. KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning[J]. NUCLEIC ACIDS RESEARCH,2024. |
APA | Li, Zhaojun.,Qu, Ning.,Zhou, Jingyi.,Sun, Jingjing.,Ren, Qun.,...&Li, Xutong.(2024).KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning.NUCLEIC ACIDS RESEARCH. |
MLA | Li, Zhaojun,et al."KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning".NUCLEIC ACIDS RESEARCH (2024). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。