KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning
2024-05-01
发表期刊NUCLEIC ACIDS RESEARCH (IF:16.6[JCR-2023],16.1[5-Year])
ISSN0305-1048
EISSN1362-4962
发表状态已发表
DOI10.1093/nar/gkae380
摘要

["Kinase-targeted inhibitors hold promise for new therapeutic options, with multi-target inhibitors offering the potential for broader efficacy while minimizing polypharmacology risks. However, comprehensive experimental profiling of kinome-wide activity is expensive, and existing computational approaches often lack scalability or accuracy for understudied kinases. We introduce KinomeMETA, an artificial intelligence (AI)-powered web platform that significantly expands the predictive range with scalability for predicting the polypharmacological effects of small molecules across the kinome. By leveraging a novel meta-learning algorithm, KinomeMETA efficiently utilizes sparse activity data, enabling rapid generalization to new kinase tasks even with limited information. This significantly expands the repertoire of accurately predictable kinases to 661 wild-type and clinically-relevant mutant kinases, far exceeding existing methods. Additionally, KinomeMETA empowers users to customize models with their proprietary data for specific research needs. Case studies demonstrate its ability to discover new active compounds by quickly adapting to small dataset. Overall, KinomeMETA offers enhanced kinome virtual profiling capabilities and is positioned as a powerful tool for developing new kinase inhibitors and advancing kinase research. The KinomeMETA server is freely accessible without registration at https://kinomemeta.alphama.com.cn/.","Graphical Abstract"]

URL查看原文
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[
WOS研究方向Biochemistry & Molecular Biology
WOS类目Biochemistry & Molecular Biology
WOS记录号WOS:001223716000001
出版者OXFORD UNIV PRESS
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/378308
专题物质科学与技术学院
物质科学与技术学院_博士生
共同第一作者Qu, Ning; Zhou, Jingyi
通讯作者Zhang, Sulin; Zheng, Mingyue; Li, Xutong
作者单位
1.Dezhou Univ, Coll Comp & Informat Engn, Dezhou 253023, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Materia Med, State Key Lab Drug Res, Drug Discovery & Design Ctr, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China
3.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
4.Suzhou Alphama Biotechnol Co Ltd, Dev Dept, Suzhou 215000, Peoples R China
5.Shanghaitech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
6.Lingang Lab, Shanghai 200031, Peoples R China
7.Nanjing Univ Chinese Med, Sch Chinese Materia Med, 138 Xianlin Rd, Nanjing 210023, Peoples R China
8.Zhejiang Univ, Coll Pharmaceut Sci, Hangzhou 310058, Peoples R China
推荐引用方式
GB/T 7714
Li, Zhaojun,Qu, Ning,Zhou, Jingyi,et al. KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning[J]. NUCLEIC ACIDS RESEARCH,2024.
APA Li, Zhaojun.,Qu, Ning.,Zhou, Jingyi.,Sun, Jingjing.,Ren, Qun.,...&Li, Xutong.(2024).KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning.NUCLEIC ACIDS RESEARCH.
MLA Li, Zhaojun,et al."KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning".NUCLEIC ACIDS RESEARCH (2024).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Zhaojun]的文章
[Qu, Ning]的文章
[Zhou, Jingyi]的文章
百度学术
百度学术中相似的文章
[Li, Zhaojun]的文章
[Qu, Ning]的文章
[Zhou, Jingyi]的文章
必应学术
必应学术中相似的文章
[Li, Zhaojun]的文章
[Qu, Ning]的文章
[Zhou, Jingyi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1093@nar@gkae380.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。