ShanghaiTech University Knowledge Management System
Open-Source Differentiable Lithography Imaging Framework | |
2024 | |
会议录名称 | PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING |
ISSN | 0277-786X |
卷号 | 12954 |
发表状态 | 已发表 |
DOI | 10.1117/12.3009980 |
摘要 | The rapid evolution of the electronics industry, driven by Moore’s law and the proliferation of integrated circuits, has led to significant advancements in modern society, including the Internet, wireless communication, and artificial intelligence (AI). Central to this progress is optical lithography, a critical technology in semiconductor manufacturing that accounts for approximately 30% to 40% of production costs. As semiconductor nodes shrink and transistor numbers increase, optical lithography becomes increasingly vital in current integrated circuit (IC) fabrication technology. This paper introduces an open-source differentiable lithography imaging framework that leverages the principles of differentiable programming and the computational power of GPUs to enhance the precision of lithography modeling and simplify the optimization of resolution enhancement techniques (RETs). The framework models the core components of lithography as differentiable segments, allowing for the implementation of standard scalar imaging models, including the Abbe and Hopkins models, as well as their approximation models. The paper introduces a computational lithography framework that optimizes semiconductor manufacturing processes using advanced computational techniques and differentiable programming. It compares imaging models and provides tools for enhancing resolution, demonstrating improved semiconductor patterning performance. The open-sourced framework represents a significant advancement in lithography technology, facilitating collaboration in the field. The source code is available at https://github.com/TorchOPC/TorchLitho. © 2024 SPIE. All rights reserved. |
会议录编者/会议主办者 | The Society of Photo-Optical Instrumentation Engineers (SPIE) |
关键词 | HTTP Integrated circuits Open source software Photolithography Program processors Semiconductor device manufacture Computational lithographies Critical technologies Differentiable programming Electronic industries Imaging modeling Machine-learning Open-source Production cost Semiconductor manufacturing Wireless communications |
会议名称 | DTCO and Computational Patterning III 2024 |
出版地 | 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA |
会议地点 | San Jose, CA, United states |
会议日期 | February 26, 2024 - February 29, 2024 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Interdisciplinary Applications ; Engineering, Manufacturing ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:001224292100016 |
出版者 | SPIE |
EI入藏号 | 20242016093131 |
EI主题词 | Machine learning |
EISSN | 1996-756X |
EI分类号 | 714.2 Semiconductor Devices and Integrated Circuits ; 723 Computer Software, Data Handling and Applications ; 723.4 Artificial Intelligence |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/375724 |
专题 | 信息科学与技术学院_PI研究组_耿浩 |
作者单位 | 1.The Chinese University of Hong Kong, Hong Kong; 2.The University of Texas, Austin, United States; 3.ShanghaiTech University, China |
推荐引用方式 GB/T 7714 | Chen, Guojin,Geng, Hao,Yu, Bei,et al. Open-Source Differentiable Lithography Imaging Framework[C]//The Society of Photo-Optical Instrumentation Engineers (SPIE). 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA:SPIE,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chen, Guojin]的文章 |
[Geng, Hao]的文章 |
[Yu, Bei]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chen, Guojin]的文章 |
[Geng, Hao]的文章 |
[Yu, Bei]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chen, Guojin]的文章 |
[Geng, Hao]的文章 |
[Yu, Bei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。