ShanghaiTech University Knowledge Management System
THOR: Text to Human-Object Interaction Diffusion via Relation Intervention | |
2024-03-17 | |
状态 | 已发表 |
摘要 | This paper addresses new methodologies to deal with the challenging task of generating dynamic Human-Object Interactions from textual descriptions (Text2HOI). While most existing works assume interactions with limited body parts or static objects, our task involves addressing the variation in human motion, the diversity of object shapes, and the semantic vagueness of object motion simultaneously. To tackle this, we propose a novel Text-guided Human-Object Interaction diffusion model with Relation Intervention (THOR). THOR is a cohesive diffusion model equipped with a relation intervention mechanism. In each diffusion step, we initiate text-guided human and object motion and then leverage human-object relations to intervene in object motion. This intervention enhances the spatial-temporal relations between humans and objects, with human-centric interaction representation providing additional guidance for synthesizing consistent motion from text. To achieve more reasonable and realistic results, interaction losses is introduced at different levels of motion granularity. Moreover, we construct Text-BEHAVE, a Text2HOI dataset that seamlessly integrates textual descriptions with the currently largest publicly available 3D HOI dataset. Both quantitative and qualitative experiments demonstrate the effectiveness of our proposed model. |
DOI | arXiv:2403.11208 |
相关网址 | 查看原文 |
出处 | Arxiv |
WOS记录号 | PPRN:88197193 |
WOS类目 | Computer Science, Software Engineering |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372965 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_PI研究组_许岚组 信息科学与技术学院_PI研究组_汪婧雅组 信息科学与技术学院_PI研究组_石野组 |
通讯作者 | Wu, Qianyang |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Shanghai AI Lab, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Wu, Qianyang,Shi, Ye,Huang, Xiaoshui,et al. THOR: Text to Human-Object Interaction Diffusion via Relation Intervention. 2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。