消息
×
loading..
Using Early Rejection Markov Chain Monte Carlo and Gaussian Processes to Accelerate ABC Methods
2024-09-01
发表期刊JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS (IF:1.4[JCR-2023],2.1[5-Year])
ISSN1061-8600
EISSN1537-2715
DOI10.1080/10618600.2024.2379349
摘要Approximate Bayesian computation (ABC) is a class of Bayesian inference algorithms that targets problems with intractable or unavailable likelihood functions. It uses synthetic data drawn from the simulation model to approximate the posterior distribution. However, ABC is computationally intensive for complex models in which simulating synthetic data is very expensive. In this article, we propose an early rejection Markov chain Monte Carlo (ejMCMC) sampler based on Gaussian processes to accelerate inference speed. We early reject samples in the first stage of the kernel using a discrepancy model, in which the discrepancy between the simulated and observed data is modeled by Gaussian process (GP). Hence, synthetic data is generated only if the parameter space is worth exploring. We demonstrate through theory, simulation experiments, and real data analysis that the new algorithm significantly improves inference efficiency compared to existing early-rejection MCMC algorithms. In addition, we employ our proposed method within an ABC sequential Monte Carlo (SMC) sampler. In our numerical experiments, we use examples of ordinary differential equations, stochastic differential equations, and delay differential equations to demonstrate the effectiveness of the proposed algorithm. We develop an R package that is available at https://github.com/caofff/ejMCMC.
关键词Approximate Bayesian computation Early rejection Gaussian process Markov chain Monte Carlo Sequence Monte Carlo
URL查看原文
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China["12131001","12101333"]
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:001316588700001
出版者TAYLOR & FRANCIS INC
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372914
专题数学科学研究所
数学科学研究所_PI研究组(P)_汪时嘉组
通讯作者Wang, Shijia; Zhou, Yongdao
作者单位
1.Nankai Univ, Sch Stat & Data Sci, NITFID, 94 Weijin Rd, Tianjin 300071, Peoples R China
2.ShanghaiTech Univ, Inst Math Sci, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
通讯作者单位数学科学研究所
推荐引用方式
GB/T 7714
Cao, Xuefei,Wang, Shijia,Zhou, Yongdao. Using Early Rejection Markov Chain Monte Carlo and Gaussian Processes to Accelerate ABC Methods[J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS,2024.
APA Cao, Xuefei,Wang, Shijia,&Zhou, Yongdao.(2024).Using Early Rejection Markov Chain Monte Carlo and Gaussian Processes to Accelerate ABC Methods.JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS.
MLA Cao, Xuefei,et al."Using Early Rejection Markov Chain Monte Carlo and Gaussian Processes to Accelerate ABC Methods".JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS (2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cao, Xuefei]的文章
[Wang, Shijia]的文章
[Zhou, Yongdao]的文章
百度学术
百度学术中相似的文章
[Cao, Xuefei]的文章
[Wang, Shijia]的文章
[Zhou, Yongdao]的文章
必应学术
必应学术中相似的文章
[Cao, Xuefei]的文章
[Wang, Shijia]的文章
[Zhou, Yongdao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。