ShanghaiTech University Knowledge Management System
Earthquake alerting based on spatial geodetic data by spatiotemporal information transformation learning | |
2023-09-12 | |
发表期刊 | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (IF:9.4[JCR-2023],10.8[5-Year]) |
ISSN | 0027-8424 |
EISSN | 1091-6490 |
卷号 | 120期号:37 |
发表状态 | 已发表 |
DOI | 10.1073/pnas.2302275120 |
摘要 | Alerting for imminent earthquakes is particularly challenging due to the high nonlinearity and nonstationarity of geodynamical phenomena. In this study, based on spatiotemporal information (STI) transformation for high-dimensional real-time data, we developed a model-free framework, i.e., real-time spatiotemporal information transformation learning (RSIT), for extending the nonlinear and nonstationary time series. Specifically, by transforming high-dimensional information of the global navigation satellite system into one-dimensional dynamics via the STI strategy, RSIT efficiently utilizes two criteria of the transformed one-dimensional dynamics, i.e., unpredictability and instability. Such two criteria contemporaneously signal a potential critical transition of the geodynamical system, thereby providing early-warning signals of possible upcoming earthquakes. RSIT explores both the spatial and temporal dynamics of real-world data on the basis of a solid theoretical background in nonlinear dynamics and delay-embedding theory. The effectiveness of RSIT was demonstrated on geodynamical data of recent earthquakes from a number of regions across at least 4 y and through further comparison with existing methods. |
关键词 | spatiotemporal information transformation learning earthquake alerting real-time geodynamic data tipping point delay-embedding theorem |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[ |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:001197170800002 |
出版者 | NATL ACAD SCIENCES |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/372835 |
专题 | 生命科学与技术学院 生命科学与技术学院_特聘教授组_陈洛南组 |
通讯作者 | Chen, Pei; Liu, Rui; Chen, Luonan |
作者单位 | 1.South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China 2.Chinese Acad Sci, Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Syst Hlth Sci Zhejiang Prov, Hangzhou 310024, Peoples R China 3.Univ Tokyo, Univ Tokyo Inst Adv Study, Int Res Ctr Neurointelligence, Tokyo 1130033, Japan 4.Chinese Acad Sci, Shanghai Inst Biochem & Cell Biol, Ctr Excellence Mol Cell Sci, Key Lab Syst Biol, Shanghai 200031, Peoples R China 5.Guangdong Inst Intelligence Sci & Technol, Zhuhai 519031, Guangdong, Peoples R China 6.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China |
通讯作者单位 | 生命科学与技术学院 |
推荐引用方式 GB/T 7714 | Tong, Yuyan,Hong, Renhao,Zhang, Ze,et al. Earthquake alerting based on spatial geodetic data by spatiotemporal information transformation learning[J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,2023,120(37). |
APA | Tong, Yuyan.,Hong, Renhao.,Zhang, Ze.,Aihara, Kazuyuki.,Chen, Pei.,...&Chen, Luonan.(2023).Earthquake alerting based on spatial geodetic data by spatiotemporal information transformation learning.PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,120(37). |
MLA | Tong, Yuyan,et al."Earthquake alerting based on spatial geodetic data by spatiotemporal information transformation learning".PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 120.37(2023). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。