消息
×
loading..
Memory-based Cross-modal Semantic Alignment Network for Radiology Report Generation
2024
发表期刊IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS (IF:6.7[JCR-2023],7.1[5-Year])
ISSN2168-2194
EISSN2168-2208
卷号PP期号:99页码:1-12
发表状态已发表
DOI10.1109/JBHI.2024.3393018
摘要

Generating radiology reports automatically reduces the workload of radiologists and helps the diagnoses of specific diseases. Many existing methods take this task as modality transfer process. However, since the key information related to disease accounts for a small proportion in both image and report, it is hard for the model to learn the latent relation between the radiology image and its report, thus failing to generate fluent and accurate radiology reports. To tackle this problem, we propose a memory-based cross-modal semantic alignment model (MCSAM) following an encoder-decoder paradigm. MCSAM includes a well initialized long-term clinical memory bank to learn disease-related representations as well as prior knowledge for different modalities to retrieve and use the retrieved memory to perform feature consolidation. To ensure the semantic consistency of the retrieved cross modal prior knowledge, a cross-modal semantic alignment module (SAM) is proposed. SAM is also able to generate semantic visual feature embeddings which can be added to the decoder and benefits report generation. More importantly, to memorize the state and additional information while generating reports with the decoder, we use learnable memory tokens which can be seen as prompts. Extensive experiments demonstrate the promising performance of our proposed method which generates state-of-the-art performance on the MIMIC-CXR dataset. IEEE

关键词Decoding Diagnosis Job analysis Radiology Semantic Web Cross modality Cross-modal Decoding Knowledge graphs Neural-networks Radiology report generation Radiology reports Report generation Semantic alignments Task analysis
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20241815997600
EI主题词Semantics
EI分类号461.6 Medicine and Pharmacology ; 622.3 Radioactive Material Applications ; 723 Computer Software, Data Handling and Applications ; 723.2 Data Processing and Image Processing ; 903 Information Science
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/370116
专题生物医学工程学院
生物医学工程学院_PI研究组_张寒组
生物医学工程学院_硕士生
通讯作者Ma, Liyan
作者单位
1.School of Computer Engineering and Science, Shanghai University, Shanghai, China
2.Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
3.School of Biomedical Engineering, Shanghaitech University, Shanghai, China
第一作者单位生物医学工程学院
推荐引用方式
GB/T 7714
Tao, Yitian,Ma, Liyan,Yu, Jing,et al. Memory-based Cross-modal Semantic Alignment Network for Radiology Report Generation[J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,2024,PP(99):1-12.
APA Tao, Yitian,Ma, Liyan,Yu, Jing,&Zhang, Han.(2024).Memory-based Cross-modal Semantic Alignment Network for Radiology Report Generation.IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,PP(99),1-12.
MLA Tao, Yitian,et al."Memory-based Cross-modal Semantic Alignment Network for Radiology Report Generation".IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS PP.99(2024):1-12.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tao, Yitian]的文章
[Ma, Liyan]的文章
[Yu, Jing]的文章
百度学术
百度学术中相似的文章
[Tao, Yitian]的文章
[Ma, Liyan]的文章
[Yu, Jing]的文章
必应学术
必应学术中相似的文章
[Tao, Yitian]的文章
[Ma, Liyan]的文章
[Yu, Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。