ShanghaiTech University Knowledge Management System
Adaptive neural network control of robotic manipulators with input constraints and without velocity measurements | |
2024 | |
发表期刊 | IET CONTROL THEORY AND APPLICATIONS (IF:2.2[JCR-2023],2.2[5-Year]) |
ISSN | 1751-8644 |
EISSN | 1751-8652 |
卷号 | 18期号:10页码:1232-1247 |
发表状态 | 已发表 |
DOI | 10.1049/cth2.12660 |
摘要 | This paper addresses the trajectory tracking problem for a class of uncertain manipulator systems under the effect of external disturbances. The main challenges lie in the input constraints and the lack of measurements of joint velocities. An extend-state-observer is utilized to estimate the velocity signals; then, a neural-network-based adaptive controller is proposed to solve the problem, where a term based on the nominal model is included to enhance the tracking ability, and the effect of uncertainties and disturbances are compensated by a neural-network term. Compared with the existing methods, the main distinctive features of the presented approach are: (i) The control law is guaranteed to be bounded by design, instead of directly bounded by a saturation function. (ii) The trade-off between the performance and robustness of the presented controller can be easily tuned by a parameter that depends on the size of model uncertainties and external disturbances. By virtue of the Lyapunov theorem, the convergence properties of the proposed controller are rigorously proved. The performance of the controller is validated via both simulations and experiments conducted on a two-degree-of-freedom robot manipulator. © 2024 The Authors. IET Control Theory & Applications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
关键词 | Adaptive control systems Constraint handling Degrees of freedom (mechanics) Economic and social effects Flexible manipulators Robot applications Uncertainty analysis Adaptive Control Adaptive neural networks Constraint handling External disturbances Input constraints Manipulator dynamics Neural network control Neural-networks Performance Tracking |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
资助项目 | Shanghai Youth Science and Technology Yangfan Program/Yangfan Program of Shanghai[21YF142960] |
WOS研究方向 | Automation & Control Systems ; Engineering ; Instruments & Instrumentation |
WOS类目 | Automation & Control Systems ; Engineering, Electrical & Electronic ; Instruments & Instrumentation |
WOS记录号 | WOS:001207583100001 |
出版者 | John Wiley and Sons Inc |
EI入藏号 | 20241815991901 |
EI主题词 | Controllers |
EI分类号 | 721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory ; 731.1 Control Systems ; 731.6 Robot Applications ; 732.1 Control Equipment ; 922.1 Probability Theory ; 931.1 Mechanics ; 971 Social Sciences |
原始文献类型 | Article in Press |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/370096 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_汪阳组 |
通讯作者 | Wang, Yang |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.School of Advanced Manufacturing, Sun Yat-sen University, Guangdong, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Heng,Zhao, Yangyang,Wang, Yang,et al. Adaptive neural network control of robotic manipulators with input constraints and without velocity measurements[J]. IET CONTROL THEORY AND APPLICATIONS,2024,18(10):1232-1247. |
APA | Zhang, Heng,Zhao, Yangyang,Wang, Yang,&Liu, Lin.(2024).Adaptive neural network control of robotic manipulators with input constraints and without velocity measurements.IET CONTROL THEORY AND APPLICATIONS,18(10),1232-1247. |
MLA | Zhang, Heng,et al."Adaptive neural network control of robotic manipulators with input constraints and without velocity measurements".IET CONTROL THEORY AND APPLICATIONS 18.10(2024):1232-1247. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。