Adaptive neural network control of robotic manipulators with input constraints and without velocity measurements
2024
发表期刊IET CONTROL THEORY AND APPLICATIONS (IF:2.2[JCR-2023],2.2[5-Year])
ISSN1751-8644
EISSN1751-8652
卷号18期号:10页码:1232-1247
发表状态已发表
DOI10.1049/cth2.12660
摘要

This paper addresses the trajectory tracking problem for a class of uncertain manipulator systems under the effect of external disturbances. The main challenges lie in the input constraints and the lack of measurements of joint velocities. An extend-state-observer is utilized to estimate the velocity signals; then, a neural-network-based adaptive controller is proposed to solve the problem, where a term based on the nominal model is included to enhance the tracking ability, and the effect of uncertainties and disturbances are compensated by a neural-network term. Compared with the existing methods, the main distinctive features of the presented approach are: (i) The control law is guaranteed to be bounded by design, instead of directly bounded by a saturation function. (ii) The trade-off between the performance and robustness of the presented controller can be easily tuned by a parameter that depends on the size of model uncertainties and external disturbances. By virtue of the Lyapunov theorem, the convergence properties of the proposed controller are rigorously proved. The performance of the controller is validated via both simulations and experiments conducted on a two-degree-of-freedom robot manipulator. © 2024 The Authors. IET Control Theory & Applications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

关键词Adaptive control systems Constraint handling Degrees of freedom (mechanics) Economic and social effects Flexible manipulators Robot applications Uncertainty analysis Adaptive Control Adaptive neural networks Constraint handling External disturbances Input constraints Manipulator dynamics Neural network control Neural-networks Performance Tracking
URL查看原文
收录类别EI ; SCI
语种英语
资助项目Shanghai Youth Science and Technology Yangfan Program/Yangfan Program of Shanghai[21YF142960]
WOS研究方向Automation & Control Systems ; Engineering ; Instruments & Instrumentation
WOS类目Automation & Control Systems ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号WOS:001207583100001
出版者John Wiley and Sons Inc
EI入藏号20241815991901
EI主题词Controllers
EI分类号721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory ; 731.1 Control Systems ; 731.6 Robot Applications ; 732.1 Control Equipment ; 922.1 Probability Theory ; 931.1 Mechanics ; 971 Social Sciences
原始文献类型Article in Press
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/370096
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_汪阳组
通讯作者Wang, Yang
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.School of Advanced Manufacturing, Sun Yat-sen University, Guangdong, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhang, Heng,Zhao, Yangyang,Wang, Yang,et al. Adaptive neural network control of robotic manipulators with input constraints and without velocity measurements[J]. IET CONTROL THEORY AND APPLICATIONS,2024,18(10):1232-1247.
APA Zhang, Heng,Zhao, Yangyang,Wang, Yang,&Liu, Lin.(2024).Adaptive neural network control of robotic manipulators with input constraints and without velocity measurements.IET CONTROL THEORY AND APPLICATIONS,18(10),1232-1247.
MLA Zhang, Heng,et al."Adaptive neural network control of robotic manipulators with input constraints and without velocity measurements".IET CONTROL THEORY AND APPLICATIONS 18.10(2024):1232-1247.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Heng]的文章
[Zhao, Yangyang]的文章
[Wang, Yang]的文章
百度学术
百度学术中相似的文章
[Zhang, Heng]的文章
[Zhao, Yangyang]的文章
[Wang, Yang]的文章
必应学术
必应学术中相似的文章
[Zhang, Heng]的文章
[Zhao, Yangyang]的文章
[Wang, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。