消息
×
loading..
Collaborative Edge AI Inference over Cloud-RAN
2024
发表期刊IEEE TRANSACTIONS ON COMMUNICATIONS (IF:7.2[JCR-2023],6.3[5-Year])
ISSN1558-0857
EISSN1558-0857
卷号PP期号:99页码:1-1
发表状态已发表
DOI10.1109/TCOMM.2024.3388488
摘要In this paper, a cloud radio access network (Cloud-RAN) based collaborative edge AI inference architecture is proposed. Specifically, geographically distributed devices capture real-time noise-corrupted sensory data samples and extract the noisy local feature vectors, which are then aggregated at each remote radio head (RRH) to suppress sensing noise. To realize efficient uplink feature aggregation, we allow each RRH receives local feature vectors from all devices over the same resource blocks simultaneously by leveraging an over-the-air computation (AirComp) technique. Thereafter, these aggregated feature vectors are quantized and transmitted to a central processor (CP) for further aggregation and downstream inference tasks. Our aim in this work is to maximize the inference accuracy via a surrogate accuracy metric called discriminant gain, which measures the discernibility of different classes in the feature space. The key challenges lie on simultaneously suppressing the coupled sensing noise, AirComp distortion caused by hostile wireless channels, and the quantization error resulting from the limited capacity of fronthaul links. To address these challenges, this work proposes a joint transmit precoding, receive beamforming, and quantization error control scheme to enhance the inference accuracy. Extensive numerical experiments demonstrate the effectiveness and superiority of our proposed optimization algorithm compared to various baselines. IEEE
关键词Cloud radio access network edge AI edge inference over-the-air computation
URL查看原文
收录类别SCI ; EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20241715954218
EI主题词Computer architecture
EI分类号716.3 Radio Systems and Equipment
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/364615
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_文鼎柱组
通讯作者Dingzhu Wen
作者单位
1.the School of Information Science and Technology, Network Intelligence Center, ShanghaiTech University, Shanghai, China
2.Shenzhen Research Institute of Big Data, Shenzhen, China
3.School of Electronic Information, Wuhan University, Wuhan, China
4.China Academy of Information and Communications Technology, Beijing, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Pengfei Zhang,Dingzhu Wen,Guangxu Zhu,et al. Collaborative Edge AI Inference over Cloud-RAN[J]. IEEE TRANSACTIONS ON COMMUNICATIONS,2024,PP(99):1-1.
APA Pengfei Zhang,Dingzhu Wen,Guangxu Zhu,Qimei Chen,Kaifeng Han,&Yuanming Shi.(2024).Collaborative Edge AI Inference over Cloud-RAN.IEEE TRANSACTIONS ON COMMUNICATIONS,PP(99),1-1.
MLA Pengfei Zhang,et al."Collaborative Edge AI Inference over Cloud-RAN".IEEE TRANSACTIONS ON COMMUNICATIONS PP.99(2024):1-1.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Pengfei Zhang]的文章
[Dingzhu Wen]的文章
[Guangxu Zhu]的文章
百度学术
百度学术中相似的文章
[Pengfei Zhang]的文章
[Dingzhu Wen]的文章
[Guangxu Zhu]的文章
必应学术
必应学术中相似的文章
[Pengfei Zhang]的文章
[Dingzhu Wen]的文章
[Guangxu Zhu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TCOMM.2024.3388488.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。