| |||||||
ShanghaiTech University Knowledge Management System
Collaborative Edge AI Inference over Cloud-RAN | |
2024 | |
发表期刊 | IEEE TRANSACTIONS ON COMMUNICATIONS (IF:7.2[JCR-2023],6.3[5-Year]) |
ISSN | 1558-0857 |
EISSN | 1558-0857 |
卷号 | PP期号:99页码:1-1 |
发表状态 | 已发表 |
DOI | 10.1109/TCOMM.2024.3388488 |
摘要 | In this paper, a cloud radio access network (Cloud-RAN) based collaborative edge AI inference architecture is proposed. Specifically, geographically distributed devices capture real-time noise-corrupted sensory data samples and extract the noisy local feature vectors, which are then aggregated at each remote radio head (RRH) to suppress sensing noise. To realize efficient uplink feature aggregation, we allow each RRH receives local feature vectors from all devices over the same resource blocks simultaneously by leveraging an over-the-air computation (AirComp) technique. Thereafter, these aggregated feature vectors are quantized and transmitted to a central processor (CP) for further aggregation and downstream inference tasks. Our aim in this work is to maximize the inference accuracy via a surrogate accuracy metric called discriminant gain, which measures the discernibility of different classes in the feature space. The key challenges lie on simultaneously suppressing the coupled sensing noise, AirComp distortion caused by hostile wireless channels, and the quantization error resulting from the limited capacity of fronthaul links. To address these challenges, this work proposes a joint transmit precoding, receive beamforming, and quantization error control scheme to enhance the inference accuracy. Extensive numerical experiments demonstrate the effectiveness and superiority of our proposed optimization algorithm compared to various baselines. IEEE |
关键词 | Cloud radio access network edge AI edge inference over-the-air computation |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20241715954218 |
EI主题词 | Computer architecture |
EI分类号 | 716.3 Radio Systems and Equipment |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/364615 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_文鼎柱组 |
通讯作者 | Dingzhu Wen |
作者单位 | 1.the School of Information Science and Technology, Network Intelligence Center, ShanghaiTech University, Shanghai, China 2.Shenzhen Research Institute of Big Data, Shenzhen, China 3.School of Electronic Information, Wuhan University, Wuhan, China 4.China Academy of Information and Communications Technology, Beijing, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Pengfei Zhang,Dingzhu Wen,Guangxu Zhu,et al. Collaborative Edge AI Inference over Cloud-RAN[J]. IEEE TRANSACTIONS ON COMMUNICATIONS,2024,PP(99):1-1. |
APA | Pengfei Zhang,Dingzhu Wen,Guangxu Zhu,Qimei Chen,Kaifeng Han,&Yuanming Shi.(2024).Collaborative Edge AI Inference over Cloud-RAN.IEEE TRANSACTIONS ON COMMUNICATIONS,PP(99),1-1. |
MLA | Pengfei Zhang,et al."Collaborative Edge AI Inference over Cloud-RAN".IEEE TRANSACTIONS ON COMMUNICATIONS PP.99(2024):1-1. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。