消息
×
loading..
An Efficient Hardware Volume Renderer for Convolutional Neural Radiance Fields
2024-05
会议录名称2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS
ISSN0271-4302
发表状态已发表
DOI10.1109/ISCAS58744.2024.10558395
摘要Neural Radiance Fields (NeRF) has attracted growing attention in the fields of 3D reconstruction and rendering. However, straightforward NeRF algorithms encounter challenges in accurately capturing complex surface details with rich high-frequency information. A recent development known as Convolutional Neural Radiance Field (ConvNeRF) has demonstrated state-of-the-art results for these tasks. But it comes with substantial irregular computational requirements, particularly in the convolutional volume rendering phase. In this paper, we introduce a hardware accelerator designed to enhance the efficiency of convolutional volume rendering in ConvNeRF. Our approach includes the creation of specialized computation modules and corresponding on-chip memory system optimized for seamless support of gated convolutions and skip connections in ConvNeRF. To validate our design, we implement it in VerilogHDL and build a prototype using Field Programmable Gate Array (FPGA). We also map our design to 40nm CMOS technology. The evaluation results underscore the superiority of our accelerator in terms of energy efficiency when compared to an implementation on an NVIDIA 2080Ti GPU, offering approximately 84.6× more frames per watt.
会议录编者/会议主办者Agency for Science, Technology and Research, Institute of Microelectronics (IME) ; Cadence ; Continental ; et al. ; National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering ; Synopsys
关键词Energy efficiency Field programmable gate arrays (FPGA) Integrated circuit design Volume rendering 3-D rendering 3D reconstruction Complex surface Computational requirements Convolutional volume rendering Gated convolution High-frequency informations Neural radiance field State of the art Surface details
会议名称2024 IEEE International Symposium on Circuits and Systems, ISCAS 2024
会议地点Singapore, Singapore
会议日期19-22 May 2024
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20242916713984
EI主题词Convolution
EI分类号525.2 Energy Conservation ; 714.2 Semiconductor Devices and Integrated Circuits ; 716.1 Information Theory and Signal Processing ; 721.2 Logic Elements ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/362293
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_娄鑫组
信息科学与技术学院_PI研究组_周平强组
信息科学与技术学院_本科生
通讯作者Lou X(娄鑫)
作者单位
1.上海科技大学信息科学与技术学院
2.智能感知与人机协同教育部重点实验室
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Wang XX,He YX,Zhang XY,et al. An Efficient Hardware Volume Renderer for Convolutional Neural Radiance Fields[C]//Agency for Science, Technology and Research, Institute of Microelectronics (IME), Cadence, Continental, et al., National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering, Synopsys:Institute of Electrical and Electronics Engineers Inc.,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang XX(王学鑫)]的文章
[He YX(贺云翔)]的文章
[Zhang XY(张湘煜)]的文章
百度学术
百度学术中相似的文章
[Wang XX(王学鑫)]的文章
[He YX(贺云翔)]的文章
[Zhang XY(张湘煜)]的文章
必应学术
必应学术中相似的文章
[Wang XX(王学鑫)]的文章
[He YX(贺云翔)]的文章
[Zhang XY(张湘煜)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。