| |||||||
ShanghaiTech University Knowledge Management System
An Efficient Hardware Volume Renderer for Convolutional Neural Radiance Fields | |
2024-05 | |
会议录名称 | 2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS |
ISSN | 0271-4302 |
发表状态 | 已发表 |
DOI | 10.1109/ISCAS58744.2024.10558395 |
摘要 | Neural Radiance Fields (NeRF) has attracted growing attention in the fields of 3D reconstruction and rendering. However, straightforward NeRF algorithms encounter challenges in accurately capturing complex surface details with rich high-frequency information. A recent development known as Convolutional Neural Radiance Field (ConvNeRF) has demonstrated state-of-the-art results for these tasks. But it comes with substantial irregular computational requirements, particularly in the convolutional volume rendering phase. In this paper, we introduce a hardware accelerator designed to enhance the efficiency of convolutional volume rendering in ConvNeRF. Our approach includes the creation of specialized computation modules and corresponding on-chip memory system optimized for seamless support of gated convolutions and skip connections in ConvNeRF. To validate our design, we implement it in VerilogHDL and build a prototype using Field Programmable Gate Array (FPGA). We also map our design to 40nm CMOS technology. The evaluation results underscore the superiority of our accelerator in terms of energy efficiency when compared to an implementation on an NVIDIA 2080Ti GPU, offering approximately 84.6× more frames per watt. |
会议录编者/会议主办者 | Agency for Science, Technology and Research, Institute of Microelectronics (IME) ; Cadence ; Continental ; et al. ; National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering ; Synopsys |
关键词 | Energy efficiency Field programmable gate arrays (FPGA) Integrated circuit design Volume rendering 3-D rendering 3D reconstruction Complex surface Computational requirements Convolutional volume rendering Gated convolution High-frequency informations Neural radiance field State of the art Surface details |
会议名称 | 2024 IEEE International Symposium on Circuits and Systems, ISCAS 2024 |
会议地点 | Singapore, Singapore |
会议日期 | 19-22 May 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20242916713984 |
EI主题词 | Convolution |
EI分类号 | 525.2 Energy Conservation ; 714.2 Semiconductor Devices and Integrated Circuits ; 716.1 Information Theory and Signal Processing ; 721.2 Logic Elements ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/362293 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_娄鑫组 信息科学与技术学院_PI研究组_周平强组 信息科学与技术学院_本科生 |
通讯作者 | Lou X(娄鑫) |
作者单位 | 1.上海科技大学信息科学与技术学院 2.智能感知与人机协同教育部重点实验室 |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wang XX,He YX,Zhang XY,et al. An Efficient Hardware Volume Renderer for Convolutional Neural Radiance Fields[C]//Agency for Science, Technology and Research, Institute of Microelectronics (IME), Cadence, Continental, et al., National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering, Synopsys:Institute of Electrical and Electronics Engineers Inc.,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。