| |||||||
ShanghaiTech University Knowledge Management System
LoGoPrompt: Synthetic Text Images Can Be Good Visual Prompts for Vision-Language Models | |
2023 | |
会议录名称 | PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION |
ISSN | 1550-5499 |
页码 | 2920-2929 |
发表状态 | 已发表 |
DOI | 10.1109/ICCV51070.2023.00274 |
摘要 | Prompt engineering is a powerful tool used to enhance the performance of pre-trained models on downstream tasks. For example, providing the prompt "Let's think step by step"improved GPT-3's reasoning accuracy to 63% on MutiArith while prompting "a photo of"filled with a class name enables CLIP to achieve 80% zero-shot accuracy on ImageNet. While previous research has explored prompt learning for the visual modality, analyzing what constitutes a good visual prompt specifically for image recognition is limited. In addition, existing visual prompt tuning methods' generalization ability is worse than text-only prompting tuning. This paper explores our key insight: synthetic text images are good visual prompts for vision-language models! To achieve that, we propose our LoGoPrompt, which reformulates the classification objective to the visual prompt selection and addresses the chicken-and-egg challenge of first adding synthetic text images as class-wise visual prompts or predicting the class first. Without any trainable visual prompt parameters, experimental results on 16 datasets demonstrate that our method consistently outperforms state-of-the-art methods in few-shot learning, base-to-new generalization, and domain generalization. © 2023 IEEE. |
关键词 | Visualization Computer vision Image recognition Self-supervised learning Cognition Task analysis Tuning |
会议名称 | 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 |
会议地点 | Paris, France |
会议日期 | October 2, 2023 - October 6, 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20241215794325 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/359965 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_杨思蓓组 |
通讯作者 | Yang, Sibei |
作者单位 | ShanghaiTech University, School of Information Science and Technology, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Shi, Cheng,Yang, Sibei. LoGoPrompt: Synthetic Text Images Can Be Good Visual Prompts for Vision-Language Models[C]:Institute of Electrical and Electronics Engineers Inc.,2023:2920-2929. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Shi, Cheng]的文章 |
[Yang, Sibei]的文章 |
百度学术 |
百度学术中相似的文章 |
[Shi, Cheng]的文章 |
[Yang, Sibei]的文章 |
必应学术 |
必应学术中相似的文章 |
[Shi, Cheng]的文章 |
[Yang, Sibei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。