CARDIAC CINE MRI MOTION CORRECTION USING DIFFUSION MODELS
2024-05
会议录名称21ST INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING
ISSN1945-7928
发表状态已发表
DOI10.1109/ISBI56570.2024.10635444
摘要

Cardiac Cine Magnetic Resonance Imaging (MRI) acquires dynamic images that depict the rhythmic contractions of the heart. Nevertheless, the extended duration of MRI scans may cause discomfort to patients and lead to motion artifacts in the acquired images. There is a compelling clinical need to develop methods that can shorten the scan time and alleviate the impact of motion-induced artifacts. Utilizing the Denoising Diffusion Probabilistic Model, a robust generative deep learning model, we present a supervised learning-based approach for cardiac motion correction. The motion-artifacts reduction begins with sampling from the Gaussian noise and motion-corrupted images, followed by iterative refinement through a U-Net architecture. This architecture is trained to denoise motion-corrupted images across various noise levels. We demonstrate that the framework is effective for cardiac cine MRI motion correction.

会议录编者/会议主办者AI2D Center ; et al. ; Therapanacea ; Thermo Fisher Scientific ; United Imaging Intelligence ; Verasonics
关键词Contrastive Learning Deep learning Diffusion tensor imaging Gaussian noise (electronic) Image acquisition Image denoising Image sampling Nuclear magnetic resonance Self-supervised learning Semi-supervised learning Cine magnetic resonance imaging Corrupted images De-noising Diffusion model Dynamic images Generative model Motion artifact Motion correction Probabilistic models Scan time
会议名称21st IEEE International Symposium on Biomedical Imaging, ISBI 2024
会议地点Athens, Greece
会议日期27-30 May 2024
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20243717025002
EI主题词Magnetic resonance imaging
EISSN1945-8452
EI分类号101.1 ; 1101.2 ; 1101.2.1 ; 1106 ; 1106.3 ; 1106.3.1 ; 1201.4 ; 1301.2.2 ; 709 Electrical Engineering, General ; 716.1 Information Theory and Signal Processing ; 746 Imaging Techniques
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/359692
专题生物医学工程学院_PI研究组_胡鹏组
生物医学工程学院
生物医学工程学院_PI研究组_齐海坤组
作者单位
1.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
2.Shanghai Clinical Research and Trial Center, Shanghai, China
第一作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Yang Liu,Jiameng Diao,Zijian Zhou,et al. CARDIAC CINE MRI MOTION CORRECTION USING DIFFUSION MODELS[C]//AI2D Center, et al., Therapanacea, Thermo Fisher Scientific, United Imaging Intelligence, Verasonics:IEEE Computer Society,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang Liu]的文章
[Jiameng Diao]的文章
[Zijian Zhou]的文章
百度学术
百度学术中相似的文章
[Yang Liu]的文章
[Jiameng Diao]的文章
[Zijian Zhou]的文章
必应学术
必应学术中相似的文章
[Yang Liu]的文章
[Jiameng Diao]的文章
[Zijian Zhou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。