消息
×
loading..
Floorplanning with Edge-Aware Graph Attention Network and Hindsight Experience Replay
2024-03-22
发表期刊ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS (TODAES)
ISSN1557-7309
EISSN1557-7309
卷号29期号:5
发表状态已发表
DOI10.1145/3653453
摘要In this article, we focus on chip floorplanning, which aims to determine the location and orientation of circuit macros simultaneously, so the chip area and wirelength are minimized. As the highest level of abstraction in hierarchical physical design, floorplanning bridges the gap between the system-level design and the physical synthesis, whose quality directly influences downstream placement and routing. To tackle chip floorplanning, we propose an end-to-end reinforcement learning (RL) methodology with a hindsight experience replay technique. An edge-aware graph attention network (EAGAT) is developed to effectively encode the macro and connection features of the netlist graph. Moreover, we build a hierarchical decoder architecture mainly consisting of transformer and attention pointer mechanism to output floorplan actions. Since the RL agent automatically extracts knowledge about the solution space, the previously learned policy can be quickly transferred to optimize new unseen netlists. Experimental results demonstrate that, compared with state-of-the-art floorplanners, the proposed end-to-end methodology significantly optimizes area and wirelength on public GSRC and MCNC benchmarks. © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
关键词Edge aware End to end Experience replay Floor-planning Graph attention network Netlist On chips Reinforcement learnings Transformer Wire length
URL查看原文
收录类别SCI ; EI
语种英语
资助项目USTC Research Funds of the Double First-Class Initiative[YD2100002012]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:001227235300016
出版者Association for Computing Machinery
EI入藏号20242016105520
EI主题词Reinforcement learning
EI分类号723.4 Artificial Intelligence
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/357341
专题信息科学与技术学院
信息科学与技术学院_PI研究组_耿浩
作者单位
1.School of Microelectronics, University of Science and Technology of China
2.School of Information Science and Technology, ShanghaiTech University
3.Department of Computer Science and Engineering The Chinese University of Hong Kong
推荐引用方式
GB/T 7714
Bo Yang,Qi Xu,Geng H,et al. Floorplanning with Edge-Aware Graph Attention Network and Hindsight Experience Replay[J]. ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS (TODAES),2024,29(5).
APA Bo Yang,Qi Xu,Geng H,Song Chen,Bei Yu,&Yi Kang.(2024).Floorplanning with Edge-Aware Graph Attention Network and Hindsight Experience Replay.ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS (TODAES),29(5).
MLA Bo Yang,et al."Floorplanning with Edge-Aware Graph Attention Network and Hindsight Experience Replay".ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS (TODAES) 29.5(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Bo Yang]的文章
[Qi Xu]的文章
[Geng H(耿浩)]的文章
百度学术
百度学术中相似的文章
[Bo Yang]的文章
[Qi Xu]的文章
[Geng H(耿浩)]的文章
必应学术
必应学术中相似的文章
[Bo Yang]的文章
[Qi Xu]的文章
[Geng H(耿浩)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。