| |||||||
ShanghaiTech University Knowledge Management System
Floorplanning with Edge-Aware Graph Attention Network and Hindsight Experience Replay | |
2024-03-22 | |
发表期刊 | ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS (TODAES)
![]() |
ISSN | 1557-7309 |
EISSN | 1557-7309 |
卷号 | 29期号:5 |
发表状态 | 已发表 |
DOI | 10.1145/3653453 |
摘要 | In this article, we focus on chip floorplanning, which aims to determine the location and orientation of circuit macros simultaneously, so the chip area and wirelength are minimized. As the highest level of abstraction in hierarchical physical design, floorplanning bridges the gap between the system-level design and the physical synthesis, whose quality directly influences downstream placement and routing. To tackle chip floorplanning, we propose an end-to-end reinforcement learning (RL) methodology with a hindsight experience replay technique. An edge-aware graph attention network (EAGAT) is developed to effectively encode the macro and connection features of the netlist graph. Moreover, we build a hierarchical decoder architecture mainly consisting of transformer and attention pointer mechanism to output floorplan actions. Since the RL agent automatically extracts knowledge about the solution space, the previously learned policy can be quickly transferred to optimize new unseen netlists. Experimental results demonstrate that, compared with state-of-the-art floorplanners, the proposed end-to-end methodology significantly optimizes area and wirelength on public GSRC and MCNC benchmarks. © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM. |
关键词 | Edge aware End to end Experience replay Floor-planning Graph attention network Netlist On chips Reinforcement learnings Transformer Wire length |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | USTC Research Funds of the Double First-Class Initiative[YD2100002012] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Hardware & Architecture ; Computer Science, Software Engineering |
WOS记录号 | WOS:001227235300016 |
出版者 | Association for Computing Machinery |
EI入藏号 | 20242016105520 |
EI主题词 | Reinforcement learning |
EI分类号 | 723.4 Artificial Intelligence |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/357341 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_耿浩 |
作者单位 | 1.School of Microelectronics, University of Science and Technology of China 2.School of Information Science and Technology, ShanghaiTech University 3.Department of Computer Science and Engineering The Chinese University of Hong Kong |
推荐引用方式 GB/T 7714 | Bo Yang,Qi Xu,Geng H,et al. Floorplanning with Edge-Aware Graph Attention Network and Hindsight Experience Replay[J]. ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS (TODAES),2024,29(5). |
APA | Bo Yang,Qi Xu,Geng H,Song Chen,Bei Yu,&Yi Kang.(2024).Floorplanning with Edge-Aware Graph Attention Network and Hindsight Experience Replay.ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS (TODAES),29(5). |
MLA | Bo Yang,et al."Floorplanning with Edge-Aware Graph Attention Network and Hindsight Experience Replay".ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS (TODAES) 29.5(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Bo Yang]的文章 |
[Qi Xu]的文章 |
[Geng H(耿浩)]的文章 |
百度学术 |
百度学术中相似的文章 |
[Bo Yang]的文章 |
[Qi Xu]的文章 |
[Geng H(耿浩)]的文章 |
必应学术 |
必应学术中相似的文章 |
[Bo Yang]的文章 |
[Qi Xu]的文章 |
[Geng H(耿浩)]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。