Data-Driven Joint Distributionally Robust Chance-Constrained Operation for Multiple Integrated Electricity and Heating Systems
2024
发表期刊IEEE TRANSACTIONS ON SUSTAINABLE ENERGY (IF:8.6[JCR-2023],8.6[5-Year])
ISSN1949-3037
EISSN1949-3037
卷号PP期号:99页码:1782-1798
发表状态已发表
DOI10.1109/TSTE.2024.3379162
摘要Integrating heating and electricity networks offers extra flexibility to the energy system operation while improving energy utilization efficiency. This paper proposes a data-driven joint distributionally robust chance-constrained (DRCC) operation model for multiple integrated electricity and heating systems (IEHSs). Flexible reserve resources in IEHS are exploited to mitigate the uncertainty of renewable energy. A distributed and parallel joint DRCC operation framework is developed to preserve the decision-making independence of multiple IEHSs, where the optimized CVaR approximation (OCA) approach is developed to transform the local joint DRCC model into a tractable model. An alternating minimization algorithm is presented to improve the tightness of OCA for joint chance constraints by iteratively tuning the OCA. Case studies on the IEEE 33-bus system with four IEHSs and the IEEE 141-bus system with eight IEHSs demonstrate the effectiveness of the proposed approach.
关键词Alternating minimization algorithm data-driven distributed optimization integrated electricity and heating systems joint distributionally robust chance-constrained optimized CVaR approximation
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20241315817354
EI主题词Iterative methods
EI分类号525.1 Energy Resources and Renewable Energy Issues ; 525.2 Energy Conservation ; 525.3 Energy Utilization ; 912.2 Management ; 921.6 Numerical Methods ; 961 Systems Science
原始文献类型Journal article (JA)
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/354979
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
作者单位
1.College of New Energy, China University of Petroleum (East China), Shandong, China
2.Automatic Control Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
3.State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China
4.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
5.Department of Electronic Engineering and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
推荐引用方式
GB/T 7714
Junyi Zhai,Yuning Jiang,Ming Zhou,et al. Data-Driven Joint Distributionally Robust Chance-Constrained Operation for Multiple Integrated Electricity and Heating Systems[J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY,2024,PP(99):1782-1798.
APA Junyi Zhai,Yuning Jiang,Ming Zhou,Yuanming Shi,Wei Chen,&Colin N. Jones.(2024).Data-Driven Joint Distributionally Robust Chance-Constrained Operation for Multiple Integrated Electricity and Heating Systems.IEEE TRANSACTIONS ON SUSTAINABLE ENERGY,PP(99),1782-1798.
MLA Junyi Zhai,et al."Data-Driven Joint Distributionally Robust Chance-Constrained Operation for Multiple Integrated Electricity and Heating Systems".IEEE TRANSACTIONS ON SUSTAINABLE ENERGY PP.99(2024):1782-1798.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Junyi Zhai]的文章
[Yuning Jiang]的文章
[Ming Zhou]的文章
百度学术
百度学术中相似的文章
[Junyi Zhai]的文章
[Yuning Jiang]的文章
[Ming Zhou]的文章
必应学术
必应学术中相似的文章
[Junyi Zhai]的文章
[Yuning Jiang]的文章
[Ming Zhou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。