Accelerating Gradient Descent for Over-Parameterized Asymmetric Low-Rank Matrix Sensing via Preconditioning
2024-04
会议录名称ICASSP 2024 - 2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)
ISSN1520-6149
页码7705-7709
发表状态已发表
DOI10.1109/ICASSP48485.2024.10446187
摘要We present an accelerated method for the asymmetric low-rank matrix sensing problem in the over-parameterized setup, named preconditioned gradient descent. We analyze the local convergence rate of the proposed algorithm starting from spectral initialization. Our algorithm is shown to have linear convergence rate independent of condition number even when ill-conditioning and over-parameterization both exist in the asymmetric matrix sensing problem. Numerical results verify the theoretical findings and demonstrate the performance of the proposed algorithm. © 2024 IEEE.
会议录编者/会议主办者The Institute of Electrical and Electronics Engineers Signal Processing Society
关键词Low-rank matrix sensing matrix recovery preconditioned gradient descent over-parameterization
会议名称49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
会议地点Seoul, Korea, Republic of
会议日期14-19 April 2024
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20242416240239
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/354936
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_赵子平组
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Cheng Cheng,Ziping Zhao. Accelerating Gradient Descent for Over-Parameterized Asymmetric Low-Rank Matrix Sensing via Preconditioning[C]//The Institute of Electrical and Electronics Engineers Signal Processing Society:Institute of Electrical and Electronics Engineers Inc.,2024:7705-7709.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cheng Cheng]的文章
[Ziping Zhao]的文章
百度学术
百度学术中相似的文章
[Cheng Cheng]的文章
[Ziping Zhao]的文章
必应学术
必应学术中相似的文章
[Cheng Cheng]的文章
[Ziping Zhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。