消息
×
loading..
Improving Safety in Mixed Traffic: A Learning-based Model Predictive Control for Autonomous and Human-Driven Vehicle Platooning
2024-03-27
发表期刊KNOWLEDGE-BASED SYSTEMS (IF:7.2[JCR-2023],7.4[5-Year])
ISSN0950-7051
EISSN1872-7409
卷号293期号:111673
发表状态已发表
DOIdoi.org/10.1016/j.knosys.2024.111673
摘要

As autonomous vehicles (AVs) become more common on public roads, their interaction with human-driven vehicles (HVs) in mixed traffic is inevitable. This requires new control strategies for AVs to handle the unpredictable nature of HVs. This study focused on safe control in mixed-vehicle platoons consisting of both AVs and HVs, particularly during longitudinal car-following scenarios. We introduce a novel model that combines a conventional first-principles model with a Gaussian process (GP) machine learning-based model to better predict HV behavior. Our results showed a significant improvement in predicting HV speed, with a 35.64% reduction in the root mean square error compared with the use of the first-principles model alone. We developed a new control strategy called GP-MPC, which uses the proposed HV model for safer distance management between vehicles in the mixed platoon. The GP-MPC strategy effectively utilizes the capacity of the GP model to assess uncertainties, thereby significantly enhancing safety in challenging traffic scenarios, such as emergency braking scenarios. In simulations, the GP-MPC strategy outperformed the baseline MPC method, offering better safety and more efficient vehicle movement in mixed traffic.

关键词Autonomous vehicles Gaussian distribution Gaussian noise (electronic) Learning systems Mean square error Predictive control systems Uncertainty analysis Autonomous Vehicles Control strategies First-principles modeling Gaussian Processes Human-driven vehicle Learning Based Models Mixed traffic Mixed-vehicle platooning Model-predictive control Public roads
URL查看原文
收录类别SCIE ; SCI ; EI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001223739700001
出版者Elsevier B.V.
EI入藏号20241415835558
EI主题词Model predictive control
EI分类号432 Highway Transportation ; 731.1 Control Systems ; 731.6 Robot Applications ; 922.1 Probability Theory ; 922.2 Mathematical Statistics
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/354895
专题信息科学与技术学院_PI研究组_江智浩组
通讯作者Yash Vardhan Pant
作者单位
1.Waterloo University
2.ShanghaiTech University
推荐引用方式
GB/T 7714
Jie Wang,Zhihao Jiang,Yash Vardhan Pant. Improving Safety in Mixed Traffic: A Learning-based Model Predictive Control for Autonomous and Human-Driven Vehicle Platooning[J]. KNOWLEDGE-BASED SYSTEMS,2024,293(111673).
APA Jie Wang,Zhihao Jiang,&Yash Vardhan Pant.(2024).Improving Safety in Mixed Traffic: A Learning-based Model Predictive Control for Autonomous and Human-Driven Vehicle Platooning.KNOWLEDGE-BASED SYSTEMS,293(111673).
MLA Jie Wang,et al."Improving Safety in Mixed Traffic: A Learning-based Model Predictive Control for Autonomous and Human-Driven Vehicle Platooning".KNOWLEDGE-BASED SYSTEMS 293.111673(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jie Wang]的文章
[Zhihao Jiang]的文章
[Yash Vardhan Pant]的文章
百度学术
百度学术中相似的文章
[Jie Wang]的文章
[Zhihao Jiang]的文章
[Yash Vardhan Pant]的文章
必应学术
必应学术中相似的文章
[Jie Wang]的文章
[Zhihao Jiang]的文章
[Yash Vardhan Pant]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。