ShanghaiTech University Knowledge Management System
IGAMT: Privacy-Preserving Electronic Health Record Synthesization with Heterogeneity and Irregularity | |
2024-03 | |
会议录名称 | 2024 ASSOCIATION FOR THE ADVANCEMENT OF ARTIFICIAL INTELLIGENCE |
ISSN | 2159-5399 |
卷号 | 38 |
期号 | 14 |
页码 | 15634-15643 |
发表状态 | 已发表 |
DOI | 10.1609/aaai.v38i14.29491 |
摘要 | Utilizing electronic health records (EHR) for machine learning-driven clinical research has great potential to enhance outcome predictions and treatment personalization. Nonetheless, due to privacy and security concerns, the secondary use of EHR data is regulated, constraining researchers' access to EHR data. Generating synthetic EHR data with deep learning methods is a viable and promising approach to mitigate privacy concerns, offering not only a supplementary resource for downstream applications but also sidestepping the privacy risks associated with real patient data. While prior efforts have concentrated on EHR data synthesis, significant challenges persist: addressing the heterogeneity of features including temporal and non-temporal features, structurally missing values, and irregularity of the temporal measures, and ensuring rigorous privacy of the real data used for model training. Existing works in this domain only focused on solving one or two aforementioned challenges. In this work, we propose IGAMT, an innovative framework to generate privacy-preserved synthetic EHR data that not only maintains high quality with heterogeneous features, missing values, and irregular measures but also achieves differential privacy with enhanced privacy-utility trade-off. Extensive experiments prove that IGAMT significantly outperforms baseline and state-of-the-art models in terms of resemblance to real data and performance of downstream applications. Ablation studies also prove the effectiveness of the techniques applied in IGAMT. Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. |
会议录编者/会议主办者 | Association for the Advancement of Artificial Intelligence |
关键词 | Deep learning Economic and social effects eHealth Hospital data processing Learning systems Privacy-preserving techniques Records management Clinical research Downstream applications Electronic health Health records Machine-learning Missing values Outcome prediction Personalizations Privacy preserving Synthesization |
会议名称 | 38th AAAI Conference on Artificial Intelligence, AAAI 2024 |
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA |
会议地点 | Vancouver, BC, Canada |
会议日期 | February 20, 2024 - February 27, 2024 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China (NSFC)[62206207] ; National Institutes of Health (NIH)["R01LM013712","R01ES033241","UL1TR002378"] ; National Science Foundation (NSF)["IIS2302968","CNS-2124104","CNS-2125530"] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods |
WOS记录号 | WOS:001239983500051 |
出版者 | Association for the Advancement of Artificial Intelligence |
EI入藏号 | 20241515875784 |
EI主题词 | Clinical research |
EISSN | 2374-3468 |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 462.2 Hospitals, Equipment and Supplies ; 716 Telecommunication ; Radar, Radio and Television ; 718 Telephone Systems and Related Technologies ; Line Communications ; 723.2 Data Processing and Image Processing ; 971 Social Sciences |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/352512 |
专题 | 信息科学与技术学院 信息科学与技术学院_本科生 信息科学与技术学院_PI研究组_王雯婕组 |
通讯作者 | Wang WJ(王雯婕); Jian Lou |
作者单位 | 1.ShanghaiTech University 2.ZJU-Hangzhou Global Scientific and Technological Innovation Center 3.Emory University |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Wang WJ,Pengfei Tang,Jian Lou,et al. IGAMT: Privacy-Preserving Electronic Health Record Synthesization with Heterogeneity and Irregularity[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:Association for the Advancement of Artificial Intelligence,2024:15634-15643. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。