消息
×
loading..
LinkPrompt: Natural and Universal Adversarial Attacks on Prompt-based Language Models
2024-03
会议录名称2024 ANNUAL CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS
卷号1
页码6473-6486
发表状态已发表
摘要

Prompt-based learning is a new language model training paradigm that adapts the Pre-trained Language Models (PLMs) to downstream tasks, which revitalizes the performance benchmarks across various natural language processing (NLP) tasks. Instead of using a fixed prompt template to fine-tune the model, some research demonstrates the effectiveness of searching for the prompt via optimization. Such prompt optimization process of prompt-based learning on PLMs also gives insight into generating adversarial prompts to mislead the model, raising concerns about the adversarial vulnerability of this paradigm. Recent studies have shown that universal adversarial triggers (UATs) can be generated to alter not only the predictions of the target PLMs but also the prediction of corresponding Prompt-based Fine-tuning Models (PFMs) under the prompt-based learning paradigm. However, UATs found in previous works are often unreadable tokens or characters and can be easily distinguished from natural texts with adaptive defenses. In this work, we consider the naturalness of the UATs and develop LinkPrompt, an adversarial attack algorithm to generate UATs by a gradient-based beam search algorithm that not only effectively attacks the target PLMs and PFMs but also maintains the naturalness among the trigger tokens. Extensive results demonstrate the effectiveness of LinkPrompt, as well as the transferability of UATs generated by LinkPrompt to open-sourced Large Language Model (LLM) Llama2 and API-accessed LLM GPT-3.5-turbo. The resource is available at https://github.com/SavannahXu79/LinkPrompt. © 2024 Association for Computational Linguistics.

会议录编者/会议主办者Baidu ; Capital One ; et al. ; Grammarly ; Megagon Labs ; Otter.ai
关键词Computational linguistics Learning algorithms Learning systems Natural language processing systems Down-stream Fine tuning Gradient based Language model Language processing Learning paradigms Model training Natural languages Optimisations Performance
会议名称2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
会议地点Hybrid, Mexico City, Mexico
会议日期June 16, 2024 - June 21, 2024
收录类别EI
语种英语
出版者Association for Computational Linguistics (ACL)
EI入藏号20243116770470
EI主题词Benchmarking
EI分类号721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory ; 723.2 Data Processing and Image Processing ; 723.4.2 Machine Learning
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/352511
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_王雯婕组
通讯作者Wang WJ(王雯婕)
作者单位
ShanghaiTech University, School of Science and Technology
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Xu Y,Wang WJ. LinkPrompt: Natural and Universal Adversarial Attacks on Prompt-based Language Models[C]//Baidu, Capital One, et al., Grammarly, Megagon Labs, Otter.ai:Association for Computational Linguistics (ACL),2024:6473-6486.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu Y(徐悦)]的文章
[Wang WJ(王雯婕)]的文章
百度学术
百度学术中相似的文章
[Xu Y(徐悦)]的文章
[Wang WJ(王雯婕)]的文章
必应学术
必应学术中相似的文章
[Xu Y(徐悦)]的文章
[Wang WJ(王雯婕)]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。