| |||||||
ShanghaiTech University Knowledge Management System
Full-Chip Voltage Prediction via Graph Attention Based Neural Networks | |
2023-10-24 | |
会议录名称 | 2023 IEEE 15TH INTERNATIONAL CONFERENCE ON ASIC (ASICON)
![]() |
ISSN | 2162-7541 |
发表状态 | 已发表 |
DOI | 10.1109/ASICON58565.2023.10396114 |
摘要 | Power supply noise has been a rising threat to the normal functioning of a microprocessor in the form of voltage emergence. The state-of-the-art commercial chips detect such emergencies by placing a limited number of on-chip noise sensors. Current sensor-based solutions suffer from limited usable sensors, and do not work well when the power delivery network has large nonlinearity. In this paper, we propose a graph attention network-based method to predict the noises in hotspot regions. Results show that our proposed method outperforms the prior approaches (linear regression and multi-layer perception) by reducing at least 20% mean absolute error and 20% maximum absolute error on average. © 2023 IEEE. |
会议录编者/会议主办者 | Fudan University ; IEEE Beijing Section ; Nanjing University ; National IC Innovation Center |
关键词 | Power Delivery Network Voltage Prediction Noise Sensor Graph Neural Networks |
会议名称 | 15th IEEE International Conference on ASIC, ASICON 2023 |
会议地点 | Nanjing, China |
会议日期 | 24-27 Oct. 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20240715533151 |
EISSN | 2162-755X |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349775 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_周平强组 |
通讯作者 | Li, Yuan |
作者单位 | 1.Duke Kunshan University, Division of Natural and Applied Sciences, Kunshan; 215316, China 2.ShanghaiTech University, School of Information Science and Technology, Shanghai; 201210, China |
推荐引用方式 GB/T 7714 | Li, Yuan,Zhou, Pingqiang. Full-Chip Voltage Prediction via Graph Attention Based Neural Networks[C]//Fudan University, IEEE Beijing Section, Nanjing University, National IC Innovation Center:IEEE Computer Society,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li, Yuan]的文章 |
[Zhou, Pingqiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li, Yuan]的文章 |
[Zhou, Pingqiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li, Yuan]的文章 |
[Zhou, Pingqiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。