消息
×
loading..
Detecting Cyber-Attacks Against Cyber-Physical Manufacturing System: A Machining Process Invariant Approach
2024
发表期刊IEEE INTERNET OF THINGS JOURNAL (IF:8.2[JCR-2023],9.0[5-Year])
ISSN2372-2541
EISSN2327-4662
卷号PP期号:99页码:1-1
发表状态已发表
DOI10.1109/JIOT.2024.3358798
摘要The era of the Industrial Internet of Things has led to an escalating menace of Cyber-Physical Manufacturing Systems (CPMS) to cyber-attacks. Presently, the field of intrusion detection for CPMS has significant advancements. However, current methodologies require significant costs for collecting historical data to train detection models, which are tailored to specific machining scenarios. Evolving machining scenarios in the real world challenge the adaptability of these methods. In this paper, We found that the machining code of the CPMS contains a complete machining process, which is an excellent detection basis. Therefore we propose MPI-CNC, an intrusion detection approach based on Machining Process Invariant in the machining code. Specifically, MPI-CNC automates the analysis of the machining codes to extract machining process rules and key parameter rules, which serve as essential detection rules. Then, MPI-CNC actively acquires runtime status from the CPMS and matches the detection rules to identify cyber-attacks behavior. MPI-CNC was evaluated using two FANUC CNC machine tools across ten real machining scenarios. The experiment demonstrated the exceptional adaptability capability of MPI-CNC. Furthermore, MPI-CNC showed superior accuracy in detecting cyber-attacks against CPMS compared to existing state-of-the-art detection methods while ensuring normal machining operations. IEEE
关键词Industrial Internet of Things Cyber-Physical Manufacturing Systems Computer Numerical Control Intrusion Detection Cyber Attack Codes (symbols) Computer control systems Computer crime Crime Cyber attacks Internet of things Machining centers Network security Numerical control systems Process control Code Computer numerical control Cybe-physical manufacturing system Cyber physicals Cyber-attacks Industrial internet of thing Intrusion-Detection Numerical control
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20240615487827
EI主题词Intrusion detection
EI分类号603.1 Machine Tools, General ; 722.3 Data Communication, Equipment and Techniques ; 723 Computer Software, Data Handling and Applications ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 731.1 Control Systems ; 971 Social Sciences
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349742
专题信息科学与技术学院
信息科学与技术学院_PI研究组_陈宇奇
通讯作者Sun, Limin
作者单位
1.Institute of Information Engineering, Chinese Academy of Sciences, Beijin, China
2.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
推荐引用方式
GB/T 7714
Li, Zedong,Chen, Xin,Chen, Yuqi,et al. Detecting Cyber-Attacks Against Cyber-Physical Manufacturing System: A Machining Process Invariant Approach[J]. IEEE INTERNET OF THINGS JOURNAL,2024,PP(99):1-1.
APA Li, Zedong.,Chen, Xin.,Chen, Yuqi.,Li, Shijie.,Wang, Hangyu.,...&Sun, Limin.(2024).Detecting Cyber-Attacks Against Cyber-Physical Manufacturing System: A Machining Process Invariant Approach.IEEE INTERNET OF THINGS JOURNAL,PP(99),1-1.
MLA Li, Zedong,et al."Detecting Cyber-Attacks Against Cyber-Physical Manufacturing System: A Machining Process Invariant Approach".IEEE INTERNET OF THINGS JOURNAL PP.99(2024):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Zedong]的文章
[Chen, Xin]的文章
[Chen, Yuqi]的文章
百度学术
百度学术中相似的文章
[Li, Zedong]的文章
[Chen, Xin]的文章
[Chen, Yuqi]的文章
必应学术
必应学术中相似的文章
[Li, Zedong]的文章
[Chen, Xin]的文章
[Chen, Yuqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。