Accelerating Globally Optimal Consensus Maximization in Geometric Vision
2024
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (IF:20.8[JCR-2023],22.2[5-Year])
ISSN0162-8828
EISSN1939-3539
卷号PP期号:99页码:1-18
发表状态已发表
DOI10.1109/TPAMI.2024.3357067
摘要Branch-and-bound-based consensus maximization stands out due to its important ability of retrieving the globally optimal solution to outlier-affected geometric problems. However, while the discovery of such solutions caries high scientific value, its application in practical scenarios is often prohibited by its computational complexity growing exponentially as a function of the dimensionality of the problem at hand. In this work, we convey a novel, general technique that allows us to branch over an $n-1$ dimensional space for an n-dimensional problem. The remaining degree of freedom can be solved globally optimally within each bound calculation by applying the efficient interval stabbing technique. While each individual bound derivation is harder to compute owing to the additional need for solving a sorting problem, the reduced number of intervals and tighter bounds in practice lead to a significant reduction in the overall number of required iterations. Besides an abstract introduction of the approach, we present applications to four fundamental geometric computer vision problems: camera resectioning, relative camera pose estimation, point set registration, and rotation and focal length estimation. Through our exhaustive tests, we demonstrate significant speed-up factors at times exceeding two orders of magnitude, thereby increasing the viability of globally optimal consensus maximizers in online application scenarios. IEEE
关键词Branch and bound method Computer vision Degrees of freedom (mechanics) Geometrical optics Geometry Problem solving Three dimensional displays Branch and bounds Computational modelling Consensus maximization Fitting Geometric vision Interval stabbing Optimal solutions Optimisations Pose-estimation Three-dimensional display
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20240615488405
EI主题词Cameras
EI分类号722.2 Computer Peripheral Equipment ; 723.5 Computer Applications ; 741.1 Light/Optics ; 741.2 Vision ; 742.2 Photographic Equipment ; 921 Mathematics ; 921.5 Optimization Techniques ; 931.1 Mechanics
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349740
专题信息科学与技术学院_博士生
信息科学与技术学院_硕士生
通讯作者Kneip, Laurent
作者单位
1.Mobile Perception Lab, ShanghaiTech University, China
2.Shanghai Engineering Research Center of Intelligent Vision and Imaging, China
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Zhang, Xinyue,Peng, Liangzu,Xu, Wanting,et al. Accelerating Globally Optimal Consensus Maximization in Geometric Vision[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2024,PP(99):1-18.
APA Zhang, Xinyue,Peng, Liangzu,Xu, Wanting,&Kneip, Laurent.(2024).Accelerating Globally Optimal Consensus Maximization in Geometric Vision.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,PP(99),1-18.
MLA Zhang, Xinyue,et al."Accelerating Globally Optimal Consensus Maximization in Geometric Vision".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE PP.99(2024):1-18.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Xinyue]的文章
[Peng, Liangzu]的文章
[Xu, Wanting]的文章
百度学术
百度学术中相似的文章
[Zhang, Xinyue]的文章
[Peng, Liangzu]的文章
[Xu, Wanting]的文章
必应学术
必应学术中相似的文章
[Zhang, Xinyue]的文章
[Peng, Liangzu]的文章
[Xu, Wanting]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TPAMI.2024.3357067.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。