ShanghaiTech University Knowledge Management System
Accelerating Globally Optimal Consensus Maximization in Geometric Vision | |
2024 | |
发表期刊 | IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (IF:20.8[JCR-2023],22.2[5-Year]) |
ISSN | 0162-8828 |
EISSN | 1939-3539 |
卷号 | PP期号:99页码:1-18 |
发表状态 | 已发表 |
DOI | 10.1109/TPAMI.2024.3357067 |
摘要 | Branch-and-bound-based consensus maximization stands out due to its important ability of retrieving the globally optimal solution to outlier-affected geometric problems. However, while the discovery of such solutions caries high scientific value, its application in practical scenarios is often prohibited by its computational complexity growing exponentially as a function of the dimensionality of the problem at hand. In this work, we convey a novel, general technique that allows us to branch over an $n-1$ dimensional space for an n-dimensional problem. The remaining degree of freedom can be solved globally optimally within each bound calculation by applying the efficient interval stabbing technique. While each individual bound derivation is harder to compute owing to the additional need for solving a sorting problem, the reduced number of intervals and tighter bounds in practice lead to a significant reduction in the overall number of required iterations. Besides an abstract introduction of the approach, we present applications to four fundamental geometric computer vision problems: camera resectioning, relative camera pose estimation, point set registration, and rotation and focal length estimation. Through our exhaustive tests, we demonstrate significant speed-up factors at times exceeding two orders of magnitude, thereby increasing the viability of globally optimal consensus maximizers in online application scenarios. IEEE |
关键词 | Branch and bound method Computer vision Degrees of freedom (mechanics) Geometrical optics Geometry Problem solving Three dimensional displays Branch and bounds Computational modelling Consensus maximization Fitting Geometric vision Interval stabbing Optimal solutions Optimisations Pose-estimation Three-dimensional display |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20240615488405 |
EI主题词 | Cameras |
EI分类号 | 722.2 Computer Peripheral Equipment ; 723.5 Computer Applications ; 741.1 Light/Optics ; 741.2 Vision ; 742.2 Photographic Equipment ; 921 Mathematics ; 921.5 Optimization Techniques ; 931.1 Mechanics |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349740 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_硕士生 |
通讯作者 | Kneip, Laurent |
作者单位 | 1.Mobile Perception Lab, ShanghaiTech University, China 2.Shanghai Engineering Research Center of Intelligent Vision and Imaging, China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Zhang, Xinyue,Peng, Liangzu,Xu, Wanting,et al. Accelerating Globally Optimal Consensus Maximization in Geometric Vision[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2024,PP(99):1-18. |
APA | Zhang, Xinyue,Peng, Liangzu,Xu, Wanting,&Kneip, Laurent.(2024).Accelerating Globally Optimal Consensus Maximization in Geometric Vision.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,PP(99),1-18. |
MLA | Zhang, Xinyue,et al."Accelerating Globally Optimal Consensus Maximization in Geometric Vision".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE PP.99(2024):1-18. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。