Optimizing Few-Shot Remote Sensing Scene Classification Based on an Improved Data Augmentation Approach
2024-02
发表期刊REMOTE SENSING (IF:4.2[JCR-2023],4.9[5-Year])
ISSN2072-4292
EISSN2072-4292
卷号16期号:3
发表状态已发表
DOI10.3390/rs16030525
摘要

In the realm of few-shot classification learning, the judicious application of data augmentation methods has a significantly positive impact on classification performance. In the context of few-shot classification tasks for remote sensing images, the augmentation of features and the efficient utilization of limited features are of paramount importance. To address the performance degradation caused by challenges such as high interclass overlap and large intraclass variance in remote sensing image features, we present a data augmentation-based classification optimization method for few-shot remote sensing image scene classification. First, we construct a distortion magnitude space using different types of features, and we perform distortion adjustments on the support set samples while introducing an optimal search for the distortion magnitude (ODS) method. Then, the augmented support set offers a wide array of feature distortions in terms of types and degrees, significantly enhancing the generalization of intrasample features. Subsequently, we devise a dual-path classification (DC) decision strategy, effectively leveraging the discriminative information provided by the postdistortion features to further reduce the likelihood of classification errors. Finally, we evaluate the proposed method using a widely used remote sensing dataset. Our experimental results demonstrate that our approach outperforms benchmark methods, achieving improved classification accuracy. © 2024 by the authors.

关键词Classification (of information) Image classification Space optics Augmentation methods Classification learning Data augmentation Feature distortion Few-shot learning Remote sensing images Remote sensing scene classification Remote-sensing Scene classification Shot classification
收录类别EI
语种英语
出版者Multidisciplinary Digital Publishing Institute (MDPI)
EI入藏号20240715559270
EI主题词Remote sensing
EI分类号656.1 Space Flight ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 741.1 Light/Optics ; 903.1 Information Sources and Analysis
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349727
专题信息科学与技术学院
信息科学与技术学院_特聘教授组_林宝军组
通讯作者Xie, Fang
作者单位
1.Department of Automation, Tsinghua University, Beijing; 100084, China
2.Innovation Academy for Microsatellites, Chinese Academy of Sciences, Shanghai; 201210, China
3.Shanghai Engineering Center for Microsatellites, Shanghai; 201304, China
4.School of Information Science and Technology, Shanghai Tech University, Shanghai; 201210, China
推荐引用方式
GB/T 7714
Dong, Zhong,Lin, Baojun,Xie, Fang. Optimizing Few-Shot Remote Sensing Scene Classification Based on an Improved Data Augmentation Approach[J]. REMOTE SENSING,2024,16(3).
APA Dong, Zhong,Lin, Baojun,&Xie, Fang.(2024).Optimizing Few-Shot Remote Sensing Scene Classification Based on an Improved Data Augmentation Approach.REMOTE SENSING,16(3).
MLA Dong, Zhong,et al."Optimizing Few-Shot Remote Sensing Scene Classification Based on an Improved Data Augmentation Approach".REMOTE SENSING 16.3(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Dong, Zhong]的文章
[Lin, Baojun]的文章
[Xie, Fang]的文章
百度学术
百度学术中相似的文章
[Dong, Zhong]的文章
[Lin, Baojun]的文章
[Xie, Fang]的文章
必应学术
必应学术中相似的文章
[Dong, Zhong]的文章
[Lin, Baojun]的文章
[Xie, Fang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。