sTBI-GAN: An adversarial learning approach for data synthesis on traumatic brain segmentation
2024-03
发表期刊COMPUTERIZED MEDICAL IMAGING AND GRAPHICS (IF:5.4[JCR-2023],6.1[5-Year])
ISSN0895-6111
EISSN1879-0771
卷号112
发表状态已发表
DOI10.1016/j.compmedimag.2024.102325
摘要

Automatic brain segmentation of magnetic resonance images (MRIs) from severe traumatic brain injury (sTBI) patients is critical for brain abnormality assessments and brain network analysis. Construction of sTBI brain segmentation model requires manually annotated MR scans of sTBI patients, which becomes a challenging problem as it is quite impractical to implement sufficient annotations for sTBI images with large deformations and lesion erosion. Data augmentation techniques can be applied to alleviate the issue of limited training samples. However, conventional data augmentation strategies such as spatial and intensity transformation are unable to synthesize the deformation and lesions in traumatic brains, which limits the performance of the subsequent segmentation task. To address these issues, we propose a novel medical image inpainting model named sTBI-GAN to synthesize labeled sTBI MR scans by adversarial inpainting. The main strength of our sTBI-GAN method is that it can generate sTBI images and corresponding labels simultaneously, which has not been achieved in previous inpainting methods for medical images. We first generate the inpainted image under the guidance of edge information following a coarse-to-fine manner, and then the synthesized MR image is used as the prior for label inpainting. Furthermore, we introduce a registration-based template augmentation pipeline to increase the diversity of the synthesized image pairs and enhance the capacity of data augmentation. Experimental results show that the proposed sTBI-GAN method can synthesize high-quality labeled sTBI images, which greatly improves the 2D and 3D traumatic brain segmentation performance compared with the alternatives. Code is available at. © 2024 Elsevier Ltd

关键词Brain Image enhancement Image segmentation Magnetic resonance Magnetic resonance imaging Medical imaging Metadata Adversarial learning Brain segmentation Data augmentation Data synthesis Image Inpainting Images synthesis Inpainting Learning approach Medical image synthesis Traumatic Brain Injuries
URL查看原文
收录类别EI ; SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[62001292] ; Shanghai Municipal Science and Technology Major Project[2018SHZDZX01]
WOS研究方向Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001164264000001
出版者Elsevier Ltd
EI入藏号20240315406088
EI主题词Generative adversarial networks
EI分类号461.1 Biomedical Engineering ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.4 Artificial Intelligence ; 746 Imaging Techniques
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349714
专题生物医学工程学院
生物医学工程学院_PI研究组_王乾组
通讯作者Qi, Zengxin; Zhang, Lichi
作者单位
1.Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai, Peoples R China
2.Fudan Univ, Huashan Hosp, Shanghai Med Coll, Dept Neurosurg, Shanghai, Peoples R China
3.Natl Ctr Neurol Disorders, Shanghai, Peoples R China
4.Shanghai Key Lab Brain Funct & Restorat & Neural, Shanghai, Peoples R China
5.Fudan Univ, State Key Lab Med Neurobiol, MOE Frontiers Ctr Brain Sci, Dept Pharmacol,Sch Basic Med Sci,Inst Brain Sci, Shanghai 200032, Peoples R China
6.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Xiangyu,Zang, Di,Wang, Sheng,et al. sTBI-GAN: An adversarial learning approach for data synthesis on traumatic brain segmentation[J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS,2024,112.
APA Zhao, Xiangyu.,Zang, Di.,Wang, Sheng.,Shen, Zhenrong.,Xuan, Kai.,...&Zhang, Lichi.(2024).sTBI-GAN: An adversarial learning approach for data synthesis on traumatic brain segmentation.COMPUTERIZED MEDICAL IMAGING AND GRAPHICS,112.
MLA Zhao, Xiangyu,et al."sTBI-GAN: An adversarial learning approach for data synthesis on traumatic brain segmentation".COMPUTERIZED MEDICAL IMAGING AND GRAPHICS 112(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhao, Xiangyu]的文章
[Zang, Di]的文章
[Wang, Sheng]的文章
百度学术
百度学术中相似的文章
[Zhao, Xiangyu]的文章
[Zang, Di]的文章
[Wang, Sheng]的文章
必应学术
必应学术中相似的文章
[Zhao, Xiangyu]的文章
[Zang, Di]的文章
[Wang, Sheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。