ROMO: Retrieval-enhanced Offline Model-based Optimization
2023-11-30
会议录名称ACM INTERNATIONAL CONFERENCE PROCEEDING SERIES
DOI10.1145/3627676.3627685
摘要Data-driven black-box model-based optimization (MBO) problems arise in a great number of practical application scenarios, where the goal is to find a design over the whole space maximizing a black-box target function based on a static offline dataset. In this work, we consider a more general but challenging MBO setting, named constrained MBO (CoMBO), where only part of the design space can be optimized while the rest is constrained by the environment. A new challenge arising from CoMBO is that most observed designs that satisfy the constraints are mediocre in evaluation. Therefore, we focus on optimizing these mediocre designs in the offline dataset while maintaining the given constraints rather than further boosting the best observed design in the traditional MBO setting. We propose retrieval-enhanced offline model-based optimization (ROMO), a new derivable forward approach that retrieves the offline dataset and aggregates relevant samples to provide a trusted prediction, and use it for gradient-based optimization. ROMO is simple to implement and outperforms state-of-The-Art approaches in the CoMBO setting. Empirically, we conduct experiments on a synthetic Hartmann (3D) function dataset, an industrial CIO dataset, and a suite of modified tasks in the Design-Bench benchmark. Results show that ROMO performs well in a wide range of constrained optimization tasks. © 2023 ACM.
关键词Black box modelling Black-box optimization Data driven Model based optimization Off-line methods Offline Offline models Optimization problems Retrieval-enhanced ML Surrogate modeling
会议名称5th International Conference on Distributed Artificial Intelligence, DAI 2023
会议地点Singapore, Singapore
会议日期November 30, 2023 - December 3, 2023
URL查看原文
收录类别EI
语种英语
出版者Association for Computing Machinery
EI入藏号20240415423665
EI主题词Constrained optimization
EI分类号961 Systems Science
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349524
专题创意与艺术学院_PI研究组(P)_田政组
通讯作者Tian, Zheng
作者单位
1.Shanghai Jiao Tong University, Shanghai, China
2.China Mobile Research Institute, Beijing, China
3.China Mobile (Zhejiang) Research and Innovation Institute, Hangzhou, China
4.ShanghaiTech University, Shanghai, China
通讯作者单位上海科技大学
推荐引用方式
GB/T 7714
Chen, Mingcheng,Zhao, Haoran,Zhao, Yuxiang,et al. ROMO: Retrieval-enhanced Offline Model-based Optimization[C]:Association for Computing Machinery,2023.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Mingcheng]的文章
[Zhao, Haoran]的文章
[Zhao, Yuxiang]的文章
百度学术
百度学术中相似的文章
[Chen, Mingcheng]的文章
[Zhao, Haoran]的文章
[Zhao, Yuxiang]的文章
必应学术
必应学术中相似的文章
[Chen, Mingcheng]的文章
[Zhao, Haoran]的文章
[Zhao, Yuxiang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3627676.3627685.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。