ShanghaiTech University Knowledge Management System
The Robust Semantic Segmentation UNCV2023 Challenge Results | |
Yu, Xuanlong1,2; Zuo, Yi3; Wang, Zitao3; Zhang, Xiaowen3; Zhao, Jiaxuan3; Yang, Yuting3; Jiao, Licheng3; Peng, Rui3; Wang, Xinyi3; Zhang, Junpei3; Zhang, Kexin3; Liu, Fang3; Alcover-Couso, Roberto4; Sanmiguel, Juan C.4; Escudero-Viñolo, Marcos4; Tian, Hanlin5; Matsui, Kenta5; Wang, Tianhao6; Adan, Fahmy5; Gao, Zhitong7 ![]() ![]() | |
2023 | |
会议录名称 | PROCEEDINGS - 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW 2023 |
页码 | 4620-4630 |
DOI | 10.1109/ICCVW60793.2023.00496 |
摘要 | This paper outlines the winning solutions employed in addressing the MUAD uncertainty quantification challenge held at ICCV 2023. The challenge was centered around semantic segmentation in urban environments, with a particular focus on natural adversarial scenarios. The report presents the results of 19 submitted entries, with numerous techniques drawing inspiration from cutting-edge uncertainty quantification methodologies presented at prominent conferences in the fields of computer vision and machine learning and journals over the past few years. Within this document, the challenge is introduced, shedding light on its purpose and objectives, which primarily revolved around enhancing the robustness of semantic segmentation in urban scenes under varying natural adversarial conditions. The report then delves into the top-performing solutions. Moreover, the document aims to provide a comprehensive overview of the diverse solutions deployed by all participants. By doing so, it seeks to offer readers a deeper insight into the array of strategies that can be leveraged to effectively handle the inherent uncertainties associated with autonomous driving and semantic segmentation, especially within urban environments. © 2023 IEEE. |
会议名称 | 2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023 |
会议地点 | Paris, France |
会议日期 | October 2, 2023 - October 6, 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20240415432424 |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349522 |
专题 | 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_硕士生 |
通讯作者 | Yu, Xuanlong |
作者单位 | 1.Paris-Saclay University, Satie, France 2.Institut Polytechnique de Paris, U2IS, Ensta Paris, France 3.Xidian University, Key Laboratory of Intelligent Perception and Image Understanding of the Ministry of Education, China 4.Autonomous University of Madrid (UAM), VPU-Lab, Spain 5.Imperial College London, United Kingdom 6.The University of Texas, Dallas, United States 7.ShanghaiTech University, China 8.Institut Polytechnique de Paris, Ltci, Télécom Paris, France 9.Politecnico di Torino, Italy 10.Nvidia Ai Technology Center, Italy 11.University of Trento, Italy 12.Valeo.ai, France 13.Aalto University, Finland 14.National University of Singapore, Singapore 15.University of Sussex, United Kingdom 16.University of Bath, United Kingdom |
推荐引用方式 GB/T 7714 | Yu, Xuanlong,Zuo, Yi,Wang, Zitao,et al. The Robust Semantic Segmentation UNCV2023 Challenge Results[C]:Institute of Electrical and Electronics Engineers Inc.,2023:4620-4630. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。