The Robust Semantic Segmentation UNCV2023 Challenge Results
2023
会议录名称PROCEEDINGS - 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW 2023
页码4620-4630
DOI10.1109/ICCVW60793.2023.00496
摘要This paper outlines the winning solutions employed in addressing the MUAD uncertainty quantification challenge held at ICCV 2023. The challenge was centered around semantic segmentation in urban environments, with a particular focus on natural adversarial scenarios. The report presents the results of 19 submitted entries, with numerous techniques drawing inspiration from cutting-edge uncertainty quantification methodologies presented at prominent conferences in the fields of computer vision and machine learning and journals over the past few years. Within this document, the challenge is introduced, shedding light on its purpose and objectives, which primarily revolved around enhancing the robustness of semantic segmentation in urban scenes under varying natural adversarial conditions. The report then delves into the top-performing solutions. Moreover, the document aims to provide a comprehensive overview of the diverse solutions deployed by all participants. By doing so, it seeks to offer readers a deeper insight into the array of strategies that can be leveraged to effectively handle the inherent uncertainties associated with autonomous driving and semantic segmentation, especially within urban environments. © 2023 IEEE.
会议名称2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023
会议地点Paris, France
会议日期October 2, 2023 - October 6, 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20240415432424
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349522
专题信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_硕士生
通讯作者Yu, Xuanlong
作者单位
1.Paris-Saclay University, Satie, France
2.Institut Polytechnique de Paris, U2IS, Ensta Paris, France
3.Xidian University, Key Laboratory of Intelligent Perception and Image Understanding of the Ministry of Education, China
4.Autonomous University of Madrid (UAM), VPU-Lab, Spain
5.Imperial College London, United Kingdom
6.The University of Texas, Dallas, United States
7.ShanghaiTech University, China
8.Institut Polytechnique de Paris, Ltci, Télécom Paris, France
9.Politecnico di Torino, Italy
10.Nvidia Ai Technology Center, Italy
11.University of Trento, Italy
12.Valeo.ai, France
13.Aalto University, Finland
14.National University of Singapore, Singapore
15.University of Sussex, United Kingdom
16.University of Bath, United Kingdom
推荐引用方式
GB/T 7714
Yu, Xuanlong,Zuo, Yi,Wang, Zitao,et al. The Robust Semantic Segmentation UNCV2023 Challenge Results[C]:Institute of Electrical and Electronics Engineers Inc.,2023:4620-4630.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yu, Xuanlong]的文章
[Zuo, Yi]的文章
[Wang, Zitao]的文章
百度学术
百度学术中相似的文章
[Yu, Xuanlong]的文章
[Zuo, Yi]的文章
[Wang, Zitao]的文章
必应学术
必应学术中相似的文章
[Yu, Xuanlong]的文章
[Zuo, Yi]的文章
[Wang, Zitao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ICCVW60793.2023.00496.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。