消息
×
loading..
Over-the-Air Federated Learning and Optimization
2024
发表期刊IEEE INTERNET OF THINGS JOURNAL (IF:8.2[JCR-2023],9.0[5-Year])
ISSN2372-2541
EISSN2327-4662
卷号11期号:10页码:16996 - 17020
发表状态已发表
DOI10.1109/JIOT.2024.3352280
摘要

Federated learning (FL), as an emerging distributed machine learning paradigm, allows a mass of edge devices to collaboratively train a global model while preserving privacy. In this tutorial, we focus on FL via over-the-air computation (AirComp), which is proposed to reduce the communication overhead for FL over wireless networks at the cost of compromising in the learning performance due to model aggregation error arising from channel fading and noise. We first provide a comprehensive study on the convergence of AirComp-based FEDAVG (AIRFEDAVG) algorithms under both strongly convex and non-convex settings with constant and diminishing learning rates in the presence of data heterogeneity. Through convergence and asymptotic analysis, we characterize the impact of aggregation error on the convergence bound and provide insights for system design with convergence guarantees. Then we derive convergence rates for AIRFEDAVG algorithms for strongly convex and non-convex objectives. For different types of local updates that can be transmitted by edge devices (i.e., local model, gradient, and model difference), we reveal that transmitting local model in AIRFEDAVG may cause divergence in the training procedure. In addition, we consider more practical signal processing schemes to improve the communication efficiency and further extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes. Extensive simulation results under different settings of objective functions, transmitted local information, and communication schemes verify the theoretical conclusions. IEEE

关键词Federated learning over-the-air computation convergence analysis optimization
URL查看原文
收录类别SCIE ; EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20240315389053
EI主题词Linear programming
EI分类号711.2 Electromagnetic Waves in Relation to Various Structures ; 716.1 Information Theory and Signal Processing ; 921 Mathematics
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349489
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_博士生
通讯作者Shi, Yuanming; Zhou, Yong
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Tsinghua Space Center, Tsinghua University, Beijing, China
3.Department of Electronic Engineering and the Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
4.Clear Water Bay, Hong Kong University of Science and Technology, Department of Electronic and Computer Engineering, Hong Kong
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhu, Jingyang,Shi, Yuanming,Zhou, Yong,et al. Over-the-Air Federated Learning and Optimization[J]. IEEE INTERNET OF THINGS JOURNAL,2024,11(10):16996 - 17020.
APA Zhu, Jingyang,Shi, Yuanming,Zhou, Yong,Jiang, Chunxiao,Chen, Wei,&Letaief, Khaled B..(2024).Over-the-Air Federated Learning and Optimization.IEEE INTERNET OF THINGS JOURNAL,11(10),16996 - 17020.
MLA Zhu, Jingyang,et al."Over-the-Air Federated Learning and Optimization".IEEE INTERNET OF THINGS JOURNAL 11.10(2024):16996 - 17020.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhu, Jingyang]的文章
[Shi, Yuanming]的文章
[Zhou, Yong]的文章
百度学术
百度学术中相似的文章
[Zhu, Jingyang]的文章
[Shi, Yuanming]的文章
[Zhou, Yong]的文章
必应学术
必应学术中相似的文章
[Zhu, Jingyang]的文章
[Shi, Yuanming]的文章
[Zhou, Yong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@JIOT.2024.3352280.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。