| |||||||
ShanghaiTech University Knowledge Management System
Over-the-Air Federated Learning and Optimization | |
2024 | |
发表期刊 | IEEE INTERNET OF THINGS JOURNAL (IF:8.2[JCR-2023],9.0[5-Year]) |
ISSN | 2372-2541 |
EISSN | 2327-4662 |
卷号 | 11期号:10页码:16996 - 17020 |
发表状态 | 已发表 |
DOI | 10.1109/JIOT.2024.3352280 |
摘要 | Federated learning (FL), as an emerging distributed machine learning paradigm, allows a mass of edge devices to collaboratively train a global model while preserving privacy. In this tutorial, we focus on FL via over-the-air computation (AirComp), which is proposed to reduce the communication overhead for FL over wireless networks at the cost of compromising in the learning performance due to model aggregation error arising from channel fading and noise. We first provide a comprehensive study on the convergence of AirComp-based FEDAVG (AIRFEDAVG) algorithms under both strongly convex and non-convex settings with constant and diminishing learning rates in the presence of data heterogeneity. Through convergence and asymptotic analysis, we characterize the impact of aggregation error on the convergence bound and provide insights for system design with convergence guarantees. Then we derive convergence rates for AIRFEDAVG algorithms for strongly convex and non-convex objectives. For different types of local updates that can be transmitted by edge devices (i.e., local model, gradient, and model difference), we reveal that transmitting local model in AIRFEDAVG may cause divergence in the training procedure. In addition, we consider more practical signal processing schemes to improve the communication efficiency and further extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes. Extensive simulation results under different settings of objective functions, transmitted local information, and communication schemes verify the theoretical conclusions. IEEE |
关键词 | Federated learning over-the-air computation convergence analysis optimization |
URL | 查看原文 |
收录类别 | SCIE ; EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20240315389053 |
EI主题词 | Linear programming |
EI分类号 | 711.2 Electromagnetic Waves in Relation to Various Structures ; 716.1 Information Theory and Signal Processing ; 921 Mathematics |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/349489 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_博士生 |
通讯作者 | Shi, Yuanming; Zhou, Yong |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Tsinghua Space Center, Tsinghua University, Beijing, China 3.Department of Electronic Engineering and the Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China 4.Clear Water Bay, Hong Kong University of Science and Technology, Department of Electronic and Computer Engineering, Hong Kong |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhu, Jingyang,Shi, Yuanming,Zhou, Yong,et al. Over-the-Air Federated Learning and Optimization[J]. IEEE INTERNET OF THINGS JOURNAL,2024,11(10):16996 - 17020. |
APA | Zhu, Jingyang,Shi, Yuanming,Zhou, Yong,Jiang, Chunxiao,Chen, Wei,&Letaief, Khaled B..(2024).Over-the-Air Federated Learning and Optimization.IEEE INTERNET OF THINGS JOURNAL,11(10),16996 - 17020. |
MLA | Zhu, Jingyang,et al."Over-the-Air Federated Learning and Optimization".IEEE INTERNET OF THINGS JOURNAL 11.10(2024):16996 - 17020. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。