LFNAT 2023 Challenge on Light Field Depth Estimation: Methods and Results
2023
会议录名称IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS
ISSN2160-7508
卷号2023-June
页码3473-3485
发表状态已发表
DOI10.1109/CVPRW59228.2023.00350
摘要

This paper reviews the 1st LFNAT challenge on light field depth estimation, which aims at predicting disparity information of central view image in a light field (i.e., pixel offset between central view image and adjacent view image). Compared to multi-view stereo matching, light field depth estimation emphasizes efficient utilization of the 2D angular information from multiple regularly varying views. This challenge specifies UrbanLF [20] light field dataset as the sole data source. There are two phases in total: submission phase and final evaluation phase, in which 75 registered participants successfully submit their predicted results in the first phase and 7 eligible teams compete in the second phase. The performance of all submissions is carefully reviewed and shown in this paper as a new standard for the current state-of-the-art in light field depth estimation. Moreover, the implementation details of these methods are also provided to stimulate related advanced research. © 2023 IEEE.

关键词Data-source Depth Estimation Estimation methods Estimation results Evaluation phase Light fields Multi-view stereo Second phase Stereo-matching Two phase
会议名称2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
会议地点Vancouver, BC, Canada
会议日期June 18, 2023 - June 22, 2023
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20233714731199
EI主题词Stereo image processing
EISSN2160-7516
EI分类号723.2 Data Processing and Image Processing
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348759
专题信息科学与技术学院_PI研究组_虞晶怡组
通讯作者Cong, Ruixuan; Chen, Rongshan
作者单位
1.State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, China
2.Beihang Hangzhou Innovation Institute Yuhang, China
3.Faculty of Applied Sciences, Macao Polytechnic University, China
4.Tsinghua University, China
5.Shanghaitech University, China
6.State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, China
7.Beijing Meet Yuan Co.,Ltd, China
8.Beijing Key Laboratory of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, China
9.Beijing Normal University, China
10.Toronto Metropolitan University, Canada
11.College of Computer Science and Technology, Zhejiang University of Technology, China
12.National University of Defense Technology, China
13.School of Information and Communication Engineering, Communication University of China, China
推荐引用方式
GB/T 7714
Sheng, Hao,Liu, Yebin,Yu, Jingyi,et al. LFNAT 2023 Challenge on Light Field Depth Estimation: Methods and Results[C]:IEEE Computer Society,2023:3473-3485.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Sheng, Hao]的文章
[Liu, Yebin]的文章
[Yu, Jingyi]的文章
百度学术
百度学术中相似的文章
[Sheng, Hao]的文章
[Liu, Yebin]的文章
[Yu, Jingyi]的文章
必应学术
必应学术中相似的文章
[Sheng, Hao]的文章
[Liu, Yebin]的文章
[Yu, Jingyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。