| |||||||
ShanghaiTech University Knowledge Management System
Task-Oriented Sensing, Computation, and Communication Integration for Multi-Device Edge AI | |
2023 | |
会议录名称 | IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS |
ISSN | 1550-3607 |
卷号 | 2023-May |
页码 | 3608-3613 |
DOI | 10.1109/ICC45041.2023.10279277 |
摘要 | This paper studies a new multi-device edge artificial-intelligent (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC) to enable low-latency intelligent services at the network edge. In this system, multiple ISAC devices perform radar sensing to obtain multi-view data, and then offload the quantized version of extracted features to a centralized edge server, which conducts model inference based on the cascaded feature vectors. Under this setup and by considering classification tasks, we measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain, which is defined as the distance of two classes in the Euclidean feature space under normalized covariance. To maximize the discriminant gain, we first quantify the influence of the sensing, computation, and communication processes on it with a derived closed-form expression. Then, an end-to-end task-oriented resource management approach is developed by designing an optimal integrated sensing, computation, and communication (ISCC) scheme. By using human motions recognition as a concrete AI inference task, extensive experiments are conducted to verify the performance of the proposed scheme. © 2023 IEEE. |
关键词 | Artificial intelligent Communication integration Integrated sensing Intelligent models Intelligent Services Low latency Multi-devices Network edges Sensing devices Task-oriented |
会议名称 | 2023 IEEE International Conference on Communications, ICC 2023 |
会议地点 | Rome, Italy |
会议日期 | May 28, 2023 - June 1, 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20234815114293 |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348757 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_PI研究组_文鼎柱组 |
通讯作者 | Wen, Dingzhu; Shi, Yuanming |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.School of Electronics, Peking University, Beijing, China 3.Weizmann Institute of Science, Rehovot, Israel 4.School of Science and Engineering (SSE), The Future Network of Intelligence Institute (FNii), The Guangdong Provincial Key Laboratory of Future Networks of Intelligence, The Chinese University of Hong Kong, Shenzhen, China 5.Shenzhen Research Institute of Big Data, Shenzhen, China 6.Peng Cheng Laboratory, Shenzhen, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wen, Dingzhu,Liu, Peixi,Zhu, Guangxu,et al. Task-Oriented Sensing, Computation, and Communication Integration for Multi-Device Edge AI[C]:Institute of Electrical and Electronics Engineers Inc.,2023:3608-3613. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。