Neural Implicit Representation for Three-dimensional Ultrasound Carotid Surface Reconstruction using Unsigned Distance Function
2023-11-07
会议录名称2023 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS)
ISSN1948-5719
发表状态已发表
DOI10.1109/IUS51837.2023.10307668
摘要Accurate 3D geometric shapes of carotid arteries are imperative for the three-dimensional (3D) ultrasound (US) imaging to clinically assess the carotid atherosclerosis (CA). However, the traditional surface reconstruction method, such as iso-surface (ISO-SURF), suffers from the image noise, voxel resolution and additional processing. In this paper, we introduce the neural implicit representation based on the deep learning network for the 3D surface reconstruction of media-adventitia boundary (MAB), plaque, and lumen-intima boundary (LIB) together. The unsigned distance functions are learned by the network to generate the mesh. For the validation, six volumes were simulated in carotid shape with MAB and LIB, and random noise was added around the boundaries. The results showed that experiments on six simulated volumes illustrated better performance than ISO-SURF, with 47%, 36%, and 55% decrease in Chamfer distance, average absolute distance, and Hausdorff distance, respectively. The visualization results from the CA clinical data revealed a smoother and more continuous geometric surface than ISO-SURF. The comparison result has shown the potential of the proposed method to examine vascular pathologies in the future. © 2023 IEEE.
会议录编者/会议主办者IEEE ; IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society (UFFC)
关键词Carotid atherosclerosis 3D ultrasound surface reconstruction Unsigned distance functions Neural network
会议名称2023 IEEE International Ultrasonics Symposium, IUS 2023
会议地点Montreal, QC, Canada
会议日期3-8 Sept. 2023
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20234915174930
EI主题词Diseases
EISSN1948-5727
EI分类号461.1 Biomedical Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 746 Imaging Techniques ; 753.1 Ultrasonic Waves ; 921 Mathematics
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348748
专题信息科学与技术学院
信息科学与技术学院_PI研究组_郑锐组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Le, Lawrence H.; Zheng, Rui
作者单位
1.University of Alberta, Department of Radiology and Diagnostic Imaging, Edmonton; AB, Canada
2.ShanghaiTech University, School of Information Science and Technology, Shanghai, China
3.University of Alberta, Department of Biomedical Engineering, Edmonton; AB, Canada
4.Shanghai Engineering Research Center of Energy Efficient and Custom Ai Ic, Shanghai, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Chen, Hongbo,Kumaralingam, Logiraj,Li, Jiawen,et al. Neural Implicit Representation for Three-dimensional Ultrasound Carotid Surface Reconstruction using Unsigned Distance Function[C]//IEEE, IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society (UFFC):IEEE Computer Society,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Hongbo]的文章
[Kumaralingam, Logiraj]的文章
[Li, Jiawen]的文章
百度学术
百度学术中相似的文章
[Chen, Hongbo]的文章
[Kumaralingam, Logiraj]的文章
[Li, Jiawen]的文章
必应学术
必应学术中相似的文章
[Chen, Hongbo]的文章
[Kumaralingam, Logiraj]的文章
[Li, Jiawen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。