DATA-DRIVEN TRANSMISSION LINE FAULT LOCATION WITH DATA-EFFICIENT TRANSFER LEARNING
2023
会议录名称IET 12TH INTERNATIONAL CONFERENCE ON RENEWABLE POWER GENERATION, RPG 2023
卷号2023
期号15
页码1092-1097
发表状态已发表
DOI10.1049/icp.2023.2408
摘要

Transmission line fault location is one of the essential steps to ensure power supply reliability. Traditional model based methods and traveling wave based methods have limitations such as requirements of accurate line parameters or high sampling rates. Existing data-driven methods usually require large number of training data that are exactly consistent with the practical power system. However, the number of fault data in practical systems are usually quite limited, and there could be mismatch between the practical system and the simulation system, limiting the fault location accuracy. To this end, this paper proposes a transfer learning based data-driven fault location method for transmission lines. The method can efficiently utilize small dataset in practical power systems. First, a neural network is constructed and is pre-trained with extensive data generated by the simulation system A. Next, another very small dataset is generated by simulation system B to mimic the practical scenario, where the line parameters are different from simulation system A. The transfer learning efficiently utilizes the small dataset to update the neural network, with the steps of freeze-training and fine-tuning. Finally, the performances of data-driven methods with and without transfer learning are compared. The results clearly indicate the effectiveness and necessity of the proposed transfer learning based fault location method. © The Institution of Engineering & Technology 2023.

关键词Data communication systems Electric lines Electric power transmission networks Learning systems Location Transmissions Data driven Data-driven methods Line parameters Power Practical systems Simulation systems Small data set Transfer learning Transmission line fault location TRANSRFER LEARNING
会议名称12th International Conference on Renewable Power Generation, RPG 2023
会议地点Shanghai, China
会议日期October 14, 2023 - October 15, 2023
URL查看原文
收录类别EI
语种英语
出版者Institution of Engineering and Technology
EI入藏号20234915157889
EI主题词Electric power transmission
EISSN2732-4494
EI分类号602.2 Mechanical Transmissions ; 706.1.1 Electric Power Transmission ; 706.2 Electric Power Lines and Equipment
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348728
专题信息科学与技术学院
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_PI研究组_刘宇组
信息科学与技术学院_硕士生
通讯作者Liu, Yu
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China
2.Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education, Shanghai; 200240, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zou, Xinchen,Liu, Yu,Xing, Yiqi,et al. DATA-DRIVEN TRANSMISSION LINE FAULT LOCATION WITH DATA-EFFICIENT TRANSFER LEARNING[C]:Institution of Engineering and Technology,2023:1092-1097.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zou, Xinchen]的文章
[Liu, Yu]的文章
[Xing, Yiqi]的文章
百度学术
百度学术中相似的文章
[Zou, Xinchen]的文章
[Liu, Yu]的文章
[Xing, Yiqi]的文章
必应学术
必应学术中相似的文章
[Zou, Xinchen]的文章
[Liu, Yu]的文章
[Xing, Yiqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。