消息
×
loading..
Treasure in Distribution: A Domain Randomization Based Multi-source Domain Generalization for 2D Medical Image Segmentation
2023
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号14223 LNCS
页码89-99
发表状态已发表
DOI10.1007/978-3-031-43901-8_9
摘要Although recent years have witnessed the great success of convolutional neural networks (CNNs) in medical image segmentation, the domain shift issue caused by the highly variable image quality of medical images hinders the deployment of CNNs in real-world clinical applications. Domain generalization (DG) methods aim to address this issue by training a robust model on the source domain, which has a strong generalization ability. Previously, many DG methods based on feature-space domain randomization have been proposed, which, however, suffer from the limited and unordered search space of feature styles. In this paper, we propose a multi-source DG method called Treasure in Distribution (TriD), which constructs an unprecedented search space to obtain the model with strong robustness by randomly sampling from a uniform distribution. To learn the domain-invariant representations explicitly, we further devise a style-mixing strategy in our TriD, which mixes the feature styles by randomly mixing the augmented and original statistics along the channel wise and can be extended to other DG methods. Extensive experiments on two medical segmentation tasks with different modalities demonstrate that our TriD achieves superior generalization performance on unseen target-domain data. Code is available at https://github.com/Chen-Ziyang/TriD. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
关键词Convolutional neural networks Generative adversarial networks Image segmentation Medical imaging Mixing Random processes Convolutional neural network Deep learning Domain generalization Domain randomization Generalisation Medical image segmentation Multi-Sources Randomisation Real-world Search spaces
会议名称26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Vancouver, BC, Canada
会议日期October 8, 2023 - October 12, 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China[62171377] ; Key Technologies Research and Development Program[2022YFC2009903/2022YFC2009900] ; Key Research and Development Program of Shaanxi Province, China[2022GY-084] ; China Postdoctoral Science Foundation[2021M703340/BX2021333]
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001109630700009
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20234314954835
EI主题词Deep learning
EISSN1611-3349
EI分类号461.1 Biomedical Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 723.4 Artificial Intelligence ; 746 Imaging Techniques ; 802.3 Chemical Operations ; 922.1 Probability Theory
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348726
专题生物医学工程学院
生物医学工程学院_PI研究组_沈定刚组
通讯作者Xia, Yong
作者单位
1.Northwestern Polytech Univ, Sch Comp Sci & Engn, Natl Engn Lab Integrated Aerosp Ground Ocean Big, Xian 710072, Peoples R China
2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Chen, Ziyang,Pan, Yongsheng,Ye, Yiwen,et al. Treasure in Distribution: A Domain Randomization Based Multi-source Domain Generalization for 2D Medical Image Segmentation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:Springer Science and Business Media Deutschland GmbH,2023:89-99.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Ziyang]的文章
[Pan, Yongsheng]的文章
[Ye, Yiwen]的文章
百度学术
百度学术中相似的文章
[Chen, Ziyang]的文章
[Pan, Yongsheng]的文章
[Ye, Yiwen]的文章
必应学术
必应学术中相似的文章
[Chen, Ziyang]的文章
[Pan, Yongsheng]的文章
[Ye, Yiwen]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1007@978-3-031-43901-8_9.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。