ShanghaiTech University Knowledge Management System
Fine-Grained Face Sketch-Photo Synthesis with Text-Guided Diffusion Models | |
2023 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 14407 LNCS |
页码 | 340-354 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-47637-2_26 |
摘要 | Face sketch-photo synthesis involves generating face photos from input face sketches. However, existing Generative Adversarial Networks (GANs)-based methods struggle to produce high-quality images due to artifacts and lack of detail caused by training difficulties. Additionally, prior approaches exhibit fixed and monotonous image styles, limiting practical usability. Drawing inspiration from recent successes in Diffusion Probability Models (DPMs) for image generation, we present a novel DPMs-based framework. This framework produces detailed face photos from input sketches while allowing control over facial attributes using textual descriptions. Our framework employs a U-Net, a semantic sketch encoder for extracting information from input sketches, and a text encoder to convert textual descriptions into text features. Furthermore, we incorporate a cross-attention mechanism within the U-Net to integrate text features. Experimental results demonstrate the effectiveness of our model, showcasing its ability to generate high-fidelity face photos while surpassing alternative methods in qualitative and quantitative evaluations. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023. |
关键词 | Generative adversarial networks Image processing Semantics Signal encoding Diffusion model Face sketch-photo synthesis Fine grained High quality images Images synthesis Network-based Probability modelling Text feature Text-to-image synthesis Textual description |
会议名称 | 7th Asian Conference on Pattern Recognition, ACPR 2023 |
会议地点 | Kitakyushu, Japan |
会议日期 | November 5, 2023 - November 8, 2023 |
收录类别 | EI |
语种 | 英语 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20234715098664 |
EI主题词 | Diffusion |
EISSN | 1611-3349 |
EI分类号 | 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348725 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院 |
通讯作者 | He, Ran |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.CRIPAC & MAIS, Institute of Automation, Chinese Academy of Sciences, Beijing, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Liu, Jin,Huang, Huaibo,Cao, Jie,et al. Fine-Grained Face Sketch-Photo Synthesis with Text-Guided Diffusion Models[C]:Springer Science and Business Media Deutschland GmbH,2023:340-354. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liu, Jin]的文章 |
[Huang, Huaibo]的文章 |
[Cao, Jie]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liu, Jin]的文章 |
[Huang, Huaibo]的文章 |
[Cao, Jie]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liu, Jin]的文章 |
[Huang, Huaibo]的文章 |
[Cao, Jie]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。