消息
×
loading..
Learning Semantics-Grounded Vocabulary Representation for Video-Text Retrieval
2023-10-26
会议录名称MM 2023 - PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA
页码4460-4470
发表状态已发表
DOI10.1145/3581783.3612537
摘要

Previous dual-encoder pre-training methods for video-text retrieval employ contrastive learning for cross-modal alignment in a latent space. However, such learned latent spaces often result in modality gap problem [26]. In this paper, we introduce a novel SemVTR framework designed to learn semantics-grounded video-text representations in a vocabulary space, in which each dimension corresponds to a semantic concept represented by a word. The representation is obtained by grounding video and text into semantically-related dimensions with high activation values. As video-text pairs share grounded dimensions, their vocabulary representations are expected to cluster together and thus alleviate modality gap problem. So, the crux of our method lies in grounding video and text into vocabulary space. Specifically, we propose a Multi-Granularity Video Semantics Grounding approach and a Textual Semantics Preserving training strategy. The visualization illustrates that SemVTR obtains semantics-gronded vocabulary representation and also alleviates the modality gap problem. SemVTR significantly outperforms existing methods on four video-text retrieval benchmarks. © 2023 ACM.

会议录编者/会议主办者ACM SIGMM
关键词Information retrieval Learning systems Signal encoding Cross-modal Dual encoder Learning semantics Modality gap Pre-training Semantic-grounded representation Text retrieval Training methods Video-text retrieval Vocabulary space
会议名称31st ACM International Conference on Multimedia, MM 2023
出版地1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
会议地点Ottawa, ON, Canada
会议日期October 29, 2023 - November 3, 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Key R&D Program of China[2022ZD0118500] ; Beijing Natural Science Foundation["JQ21017","L223003"] ; Natural Science Foundation of China["61972397","62036011","62192782","U2033210","62225207","U19B2038","62121002"]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号WOS:001199449104053
出版者Association for Computing Machinery, Inc
EI入藏号20235015224156
EI主题词Semantics
EI分类号716.1 Information Theory and Signal Processing ; 903.3 Information Retrieval and Use
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348712
专题信息科学与技术学院
通讯作者Xu, Haiyang; Yuan, Chunfeng
作者单位
1.University of Science and Technology of China, Hefei, China
2.Mais, Institute of Automation, Cas, Beijing, China
3.School of Ai, University of Chinese Academy of Sciences, Beijing, China
4.Damo Academy, Alibaba Group, Hangzhou, China
5.School of Information Science and Technology, ShanghaiTech University, Beijing, China
推荐引用方式
GB/T 7714
Shi, Yaya,Liu, Haowei,Xu, Haiyang,et al. Learning Semantics-Grounded Vocabulary Representation for Video-Text Retrieval[C]//ACM SIGMM. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:Association for Computing Machinery, Inc,2023:4460-4470.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shi, Yaya]的文章
[Liu, Haowei]的文章
[Xu, Haiyang]的文章
百度学术
百度学术中相似的文章
[Shi, Yaya]的文章
[Liu, Haowei]的文章
[Xu, Haiyang]的文章
必应学术
必应学术中相似的文章
[Shi, Yaya]的文章
[Liu, Haowei]的文章
[Xu, Haiyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。