| |||||||
ShanghaiTech University Knowledge Management System
Modeling Life-Span Brain Age from Large-Scale Dataset Based on Multi-level Information Fusion | |
2024 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 14349 LNCS |
页码 | 84-93 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-45676-3_9 |
摘要 | Predicted brain age could be used to measure individual brain status over development and degeneration, which could also indicate the potential risk of age-related brain disorders. Although various techniques for the estimation of brain age have been developed, most approaches only cover a small age range, either young or elderly period, leading to limited applications. In this work, we propose a novel approach to build a brain age prediction model on a lifespan dataset with T1-weighted magnetic resonance imaging (MRI) scans. First, we utilize different neural networks to extract features from 1) an original 3D MRI scan associated with the brain maturing and aging process, 2) three (axial, coronal, and sagittal) 2D slices selected based on prior knowledge to provide possible white matter hypointensity information, and 3) volume ratios of different brain regions related to maturing and aging. Then, these extracted features of multiple levels are fused by the transformer-based cross-attention mechanism to predict the brain age. Our experiments are conducted on a total of 5376 subjects aged from 6 to 96 years from 8 cohorts. In particular, our model is built on 3372 healthy subjects and applied to 2004 subjects with brain disorders. Experimental results show that our method achieves a mean absolute error (MAE) of 2.72 years between estimated brain age and chronological age. Furthermore, when applying our model to age-related brain disorders, it turns out that both cerebral small vessel disease (SVD) and Alzheimer’s disease (AD) groups demonstrate accelerated brain aging. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG. |
关键词 | Brain Forecasting Large dataset Risk assessment Age predictions Age-related Brain age prediction Brain disorders Large-scale datasets Lifespans Multilevels Potential risks Prediction modelling T1-weighted magnetic resonance imaging |
会议名称 | 14th International Workshop on Machine Learning in Medical Imaging, MLMI 2023 |
会议地点 | Vancouver, BC, Canada |
会议日期 | October 8, 2023 - October 8, 2023 |
收录类别 | EI |
语种 | 英语 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20234515039014 |
EI主题词 | Magnetic resonance imaging |
EISSN | 1611-3349 |
EI分类号 | 461.1 Biomedical Engineering ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.2 Data Processing and Image Processing ; 746 Imaging Techniques ; 914.1 Accidents and Accident Prevention |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348707 |
专题 | 生物医学工程学院 信息科学与技术学院 信息科学与技术学院_PI研究组_高飞组 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_公共科研平台_智能医学科研平台 生物医学工程学院_PI研究组_张寒组 生物医学工程学院_PI研究组_孙开聪组 |
通讯作者 | Shen, Dinggang |
作者单位 | 1.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China 2.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 3.Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China 4.Shanghai Clinical Research and Trial Center, Shanghai, China |
第一作者单位 | 生物医学工程学院; 信息科学与技术学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Zhao, Nan,Pan, Yongsheng,Sun, Kaicong,et al. Modeling Life-Span Brain Age from Large-Scale Dataset Based on Multi-level Information Fusion[C]:Springer Science and Business Media Deutschland GmbH,2024:84-93. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。