消息
×
loading..
Partial Multi-label Learning with a Few Accurately Labeled Data
2024
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号14326 LNAI
页码79-90
发表状态已发表
DOI10.1007/978-981-99-7022-3_7
摘要

Partial Multi-label Learning is a multi-label classification problem where only candidate labels are given for training data. These candidate labels consist of relevant labels and false-positive labels. In this paper, we consider the PML when a few accurately labeled data are available. In practice, it is difficult to remove false-positive labels fully due to a large cost, but it is possible to do that in a few instances with a smaller cost. Conventional PML methods do not assume those accurately labeled data so it is hard to utilize data effectively. We propose a new algorithm called PML-VD to utilize those accurately labeled data. PML-VD first disambiguates the noisy-labeled data with both accurately labeled data and noisy labeled data and then learns a classifier. This two-stage approach enables the effective utilization of accurately labeled data without overfitting. Experiments on nine PML datasets shows the effectiveness of explicit utilization of accurately labeled data. In best cases, PML-VD improves 7% classification accuracy in terms of ranking loss. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd 2024.

关键词Learning algorithms Learning systems Machine learning False positive Labeled data Learn+ Machine-learning Multi-label classifications Multi-label learning Partial multi-label learning Ranking loss Training data
会议名称20th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2023
会议地点Jakarta, Indonesia
会议日期November 15, 2023 - November 19, 2023
收录类别EI
语种英语
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20234715098424
EI主题词Classification (of information)
EISSN1611-3349
EI分类号716.1 Information Theory and Signal Processing ; 723.4 Artificial Intelligence ; 723.4.2 Machine Learning ; 903.1 Information Sources and Analysis
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348705
专题信息科学与技术学院
信息科学与技术学院_PI研究组_孙露组
通讯作者Mizuguchi, Haruhi
作者单位
1.Division of Computer Science and Information Technology, Graduate School of Information Science and Technology, Hokkaido University, Sapporo; 060-0814, Japan
2.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China
推荐引用方式
GB/T 7714
Mizuguchi, Haruhi,Kimura, Keigo,Kudo, Mineichi,et al. Partial Multi-label Learning with a Few Accurately Labeled Data[C]:Springer Science and Business Media Deutschland GmbH,2024:79-90.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Mizuguchi, Haruhi]的文章
[Kimura, Keigo]的文章
[Kudo, Mineichi]的文章
百度学术
百度学术中相似的文章
[Mizuguchi, Haruhi]的文章
[Kimura, Keigo]的文章
[Kudo, Mineichi]的文章
必应学术
必应学术中相似的文章
[Mizuguchi, Haruhi]的文章
[Kimura, Keigo]的文章
[Kudo, Mineichi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。