消息
×
loading..
Incomplete Multi-view Weak-Label Learning with Noisy Features and Imbalanced Labels
2024
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号14326 LNAI
页码124-130
DOI10.1007/978-981-99-7022-3_12
摘要A variety of modern applications exhibit multi-view multi-label learning, where each sample has multi-view features, and multiple labels are correlated via common views. Current methods usually fail to directly deal with the setting where only a subset of features and labels are observed for each sample, and ignore the presence of noisy views and imbalanced labels in real-world problems. In this paper, we propose a novel method to overcome the limitations. It jointly embeds incomplete views and weak labels into a low-dimensional subspace with adaptive weights, and facilitates the difference between embedding weight matrices via auto-weighted Hilbert-Schmidt Independence Criterion (HSIC) to reduce the redundancy. Moreover, it adaptively learns view-wise importance for embedding to detect noisy views, and mitigates the label imbalance problem by focal loss. Experimental results on four real-world multi-view multi-label datasets demonstrate the effectiveness of the proposed method. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd 2024.
关键词Embeddings Focal loss Hilbert-schmidt independence criterions Modern applications Multi-label learning Multi-view multi-label learning Multi-views Multiple labels Weak labels Weakly supervised learning
会议名称20th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2023
会议地点Jakarta, Indonesia
会议日期November 15, 2023 - November 19, 2023
URL查看原文
收录类别EI
语种英语
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20234715098386
EI主题词Embeddings
EISSN1611-3349
EI分类号723.4 Artificial Intelligence
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348704
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_孙露组
通讯作者Yang, Zijian
作者单位
1.ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, Pudong, China
2.Hokkaido University, Kita 8, Nishi 5, Kita-ku, Hokkaido, Sapporo, Japan
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Li, Zhiwei,Yang, Zijian,Sun, Lu,et al. Incomplete Multi-view Weak-Label Learning with Noisy Features and Imbalanced Labels[C]:Springer Science and Business Media Deutschland GmbH,2024:124-130.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Zhiwei]的文章
[Yang, Zijian]的文章
[Sun, Lu]的文章
百度学术
百度学术中相似的文章
[Li, Zhiwei]的文章
[Yang, Zijian]的文章
[Sun, Lu]的文章
必应学术
必应学术中相似的文章
[Li, Zhiwei]的文章
[Yang, Zijian]的文章
[Sun, Lu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1007@978-981-99-7022-3_12.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。