| |||||||
ShanghaiTech University Knowledge Management System
Incomplete Multi-view Weak-Label Learning with Noisy Features and Imbalanced Labels | |
2024 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 14326 LNAI |
页码 | 124-130 |
DOI | 10.1007/978-981-99-7022-3_12 |
摘要 | A variety of modern applications exhibit multi-view multi-label learning, where each sample has multi-view features, and multiple labels are correlated via common views. Current methods usually fail to directly deal with the setting where only a subset of features and labels are observed for each sample, and ignore the presence of noisy views and imbalanced labels in real-world problems. In this paper, we propose a novel method to overcome the limitations. It jointly embeds incomplete views and weak labels into a low-dimensional subspace with adaptive weights, and facilitates the difference between embedding weight matrices via auto-weighted Hilbert-Schmidt Independence Criterion (HSIC) to reduce the redundancy. Moreover, it adaptively learns view-wise importance for embedding to detect noisy views, and mitigates the label imbalance problem by focal loss. Experimental results on four real-world multi-view multi-label datasets demonstrate the effectiveness of the proposed method. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd 2024. |
关键词 | Embeddings Focal loss Hilbert-schmidt independence criterions Modern applications Multi-label learning Multi-view multi-label learning Multi-views Multiple labels Weak labels Weakly supervised learning |
会议名称 | 20th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2023 |
会议地点 | Jakarta, Indonesia |
会议日期 | November 15, 2023 - November 19, 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20234715098386 |
EI主题词 | Embeddings |
EISSN | 1611-3349 |
EI分类号 | 723.4 Artificial Intelligence |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348704 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_孙露组 |
通讯作者 | Yang, Zijian |
作者单位 | 1.ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, Pudong, China 2.Hokkaido University, Kita 8, Nishi 5, Kita-ku, Hokkaido, Sapporo, Japan |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Li, Zhiwei,Yang, Zijian,Sun, Lu,et al. Incomplete Multi-view Weak-Label Learning with Noisy Features and Imbalanced Labels[C]:Springer Science and Business Media Deutschland GmbH,2024:124-130. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li, Zhiwei]的文章 |
[Yang, Zijian]的文章 |
[Sun, Lu]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li, Zhiwei]的文章 |
[Yang, Zijian]的文章 |
[Sun, Lu]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li, Zhiwei]的文章 |
[Yang, Zijian]的文章 |
[Sun, Lu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。