Fast metric multi-view hashing for multimedia retrieval
2024-03
发表期刊INFORMATION FUSION
ISSN1566-2535
卷号103
发表状态已发表
DOI10.1016/j.inffus.2023.102130
摘要

The acquisition of multi-view hash representation for heterogeneous data holds paramount importance in the domain of multimedia retrieval. The limited retrieval precision observed in current approaches stems from their inadequate integration of multi-view features and their failure to effectively leverage the metric information available from diverse samples. Commonly employed fusion methods, such as concatenation or weighted sum, are insufficient in capturing the complementarity among multiple view features. Furthermore, these methods neglect the valuable information contributed by dissimilar samples. To address these challenges, we propose an innovative method termed Fast Metric Multi-View Hashing (FMMVH). Our approach showcases the superiority of gate-based fusion over traditional methods, as substantiated by extensive empirical evidence. Additionally, this paper proposes a novel deep metric loss function to enable the utilization of metric information from dissimilar samples. We exclusively train our method using this single loss function. To enhance practical applicability in industrial production environments, we employ model compression techniques to optimize the proposed method. On benchmark datasets such as MIR-Flickr25K, NUS-WIDE, and MS COCO, the performance of our FMMVH method significantly surpasses that of existing state-of-the-art methods, demonstrating improvements of up to 7.47% in mean Average Precision (mAP). © 2023 Elsevier B.V.

关键词Benchmarking Deep metric learning Heterogeneous data Loss functions Metric information Metric learning Multi-modal Multi-modal hash Multi-view hash Multi-views Multimedia Retrieval
收录类别EI
语种英语
出版者Elsevier B.V.
EI入藏号20234815138177
EI主题词Deep learning
EI分类号461.4 Ergonomics and Human Factors Engineering
原始文献类型Journal article (JA)
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348609
专题信息科学与技术学院_硕士生
通讯作者Zhou, Yi
作者单位
1.University of Science and Technology of China, Hefei; 230000, China
2.Zhejiang Lab, Hangzhou; 310000, China
3.ShanghaiTech University, Shanghai; 200000, China
推荐引用方式
GB/T 7714
Zhu, Jian,Hu, Pengbo,Li, Bingqian,et al. Fast metric multi-view hashing for multimedia retrieval[J]. INFORMATION FUSION,2024,103.
APA Zhu, Jian,Hu, Pengbo,Li, Bingqian,&Zhou, Yi.(2024).Fast metric multi-view hashing for multimedia retrieval.INFORMATION FUSION,103.
MLA Zhu, Jian,et al."Fast metric multi-view hashing for multimedia retrieval".INFORMATION FUSION 103(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhu, Jian]的文章
[Hu, Pengbo]的文章
[Li, Bingqian]的文章
百度学术
百度学术中相似的文章
[Zhu, Jian]的文章
[Hu, Pengbo]的文章
[Li, Bingqian]的文章
必应学术
必应学术中相似的文章
[Zhu, Jian]的文章
[Hu, Pengbo]的文章
[Li, Bingqian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。