ShanghaiTech University Knowledge Management System
Fast metric multi-view hashing for multimedia retrieval | |
2024-03 | |
发表期刊 | INFORMATION FUSION |
ISSN | 1566-2535 |
卷号 | 103 |
发表状态 | 已发表 |
DOI | 10.1016/j.inffus.2023.102130 |
摘要 | The acquisition of multi-view hash representation for heterogeneous data holds paramount importance in the domain of multimedia retrieval. The limited retrieval precision observed in current approaches stems from their inadequate integration of multi-view features and their failure to effectively leverage the metric information available from diverse samples. Commonly employed fusion methods, such as concatenation or weighted sum, are insufficient in capturing the complementarity among multiple view features. Furthermore, these methods neglect the valuable information contributed by dissimilar samples. To address these challenges, we propose an innovative method termed Fast Metric Multi-View Hashing (FMMVH). Our approach showcases the superiority of gate-based fusion over traditional methods, as substantiated by extensive empirical evidence. Additionally, this paper proposes a novel deep metric loss function to enable the utilization of metric information from dissimilar samples. We exclusively train our method using this single loss function. To enhance practical applicability in industrial production environments, we employ model compression techniques to optimize the proposed method. On benchmark datasets such as MIR-Flickr25K, NUS-WIDE, and MS COCO, the performance of our FMMVH method significantly surpasses that of existing state-of-the-art methods, demonstrating improvements of up to 7.47% in mean Average Precision (mAP). © 2023 Elsevier B.V. |
关键词 | Benchmarking Deep metric learning Heterogeneous data Loss functions Metric information Metric learning Multi-modal Multi-modal hash Multi-view hash Multi-views Multimedia Retrieval |
收录类别 | EI |
语种 | 英语 |
出版者 | Elsevier B.V. |
EI入藏号 | 20234815138177 |
EI主题词 | Deep learning |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering |
原始文献类型 | Journal article (JA) |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348609 |
专题 | 信息科学与技术学院_硕士生 |
通讯作者 | Zhou, Yi |
作者单位 | 1.University of Science and Technology of China, Hefei; 230000, China 2.Zhejiang Lab, Hangzhou; 310000, China 3.ShanghaiTech University, Shanghai; 200000, China |
推荐引用方式 GB/T 7714 | Zhu, Jian,Hu, Pengbo,Li, Bingqian,et al. Fast metric multi-view hashing for multimedia retrieval[J]. INFORMATION FUSION,2024,103. |
APA | Zhu, Jian,Hu, Pengbo,Li, Bingqian,&Zhou, Yi.(2024).Fast metric multi-view hashing for multimedia retrieval.INFORMATION FUSION,103. |
MLA | Zhu, Jian,et al."Fast metric multi-view hashing for multimedia retrieval".INFORMATION FUSION 103(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。