An EM Framework for Online Incremental Learning of Semantic Segmentation
2021-08-08
会议录名称ARXIV
发表状态已发表
DOIarXiv:2108.03613
摘要

Incremental learning of semantic segmentation has emerged as a promising strategy for visual scene interpretation in the open- world setting. However, it remains challenging to acquire novel classes in an online fashion for the segmentation task, mainly due to its continuously-evolving semantic label space, partial pixelwise ground-truth annotations, and constrained data availability. To ad- dress this, we propose an incremental learning strategy that can fast adapt deep segmentation models without catastrophic forgetting, using a streaming input data with pixel annotations on the novel classes only. To this end, we develop a uni ed learning strategy based on the Expectation-Maximization (EM) framework, which integrates an iterative relabeling strategy that lls in the missing labels and a rehearsal-based incremental learning step that balances the stability-plasticity of the model. Moreover, our EM algorithm adopts an adaptive sampling method to select informative train- ing data and a class-balancing training strategy in the incremental model updates, both improving the e cacy of model learning. We validate our approach on the PASCAL VOC 2012 and ADE20K datasets, and the results demonstrate its superior performance over the existing incremental methods.

关键词Online Learning Semantic Segmentation Deep Neural Network
会议名称29th ACM International Conference on Multimedia (MM)
出版地1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
会议地点null,null,ELECTR NETWORK
会议日期OCT 20-24, 2021
URL查看原文
收录类别CPCI-S
语种英语
资助项目Shanghai Science and Technology Program[21010502700]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering
WOS记录号PPRN:11879814
出版者ASSOC COMPUTING MACHINERY
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348543
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_硕士生
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Yan, Shipeng,Zhou, Jiale,Xie, Jiangwei,et al. An EM Framework for Online Incremental Learning of Semantic Segmentation[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yan, Shipeng]的文章
[Zhou, Jiale]的文章
[Xie, Jiangwei]的文章
百度学术
百度学术中相似的文章
[Yan, Shipeng]的文章
[Zhou, Jiale]的文章
[Xie, Jiangwei]的文章
必应学术
必应学术中相似的文章
[Yan, Shipeng]的文章
[Zhou, Jiale]的文章
[Xie, Jiangwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。