ShanghaiTech University Knowledge Management System
An EM Framework for Online Incremental Learning of Semantic Segmentation | |
2021-08-08 | |
会议录名称 | ARXIV |
发表状态 | 已发表 |
DOI | arXiv:2108.03613 |
摘要 | Incremental learning of semantic segmentation has emerged as a promising strategy for visual scene interpretation in the open- world setting. However, it remains challenging to acquire novel classes in an online fashion for the segmentation task, mainly due to its continuously-evolving semantic label space, partial pixelwise ground-truth annotations, and constrained data availability. To ad- dress this, we propose an incremental learning strategy that can fast adapt deep segmentation models without catastrophic forgetting, using a streaming input data with pixel annotations on the novel classes only. To this end, we develop a uni ed learning strategy based on the Expectation-Maximization (EM) framework, which integrates an iterative relabeling strategy that lls in the missing labels and a rehearsal-based incremental learning step that balances the stability-plasticity of the model. Moreover, our EM algorithm adopts an adaptive sampling method to select informative train- ing data and a class-balancing training strategy in the incremental model updates, both improving the e cacy of model learning. We validate our approach on the PASCAL VOC 2012 and ADE20K datasets, and the results demonstrate its superior performance over the existing incremental methods. |
关键词 | Online Learning Semantic Segmentation Deep Neural Network |
会议名称 | 29th ACM International Conference on Multimedia (MM) |
出版地 | 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES |
会议地点 | null,null,ELECTR NETWORK |
会议日期 | OCT 20-24, 2021 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
资助项目 | Shanghai Science and Technology Program[21010502700] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Software Engineering |
WOS记录号 | PPRN:11879814 |
出版者 | ASSOC COMPUTING MACHINERY |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348543 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_硕士生 |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Beijing, Peoples R China 3.Univ Chinese Acad Sci, Beijing, Peoples R China 4.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Yan, Shipeng,Zhou, Jiale,Xie, Jiangwei,et al. An EM Framework for Online Incremental Learning of Semantic Segmentation[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2021. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。