消息
×
loading..
Adaptive semiparametric Bayesian differential equations via sequential Monte Carlo
2021-09-06
状态已发表
摘要

Nonlinear differential equations (DEs) are used in a wide range of scientific problems to model complex dynamic systems. The differential equations often contain unknown parameters that are of scientific interest, which have to be estimated from noisy measurements of the dynamic system. Generally, there is no closed-form solution for nonlinear DEs, and the likelihood surface for the parameter of interest is multi-modal and very sensitive to different parameter values. We propose a Bayesian framework for nonlinear DE systems. A flexible nonparametric function is used to represent the dynamic process such that expensive numerical solvers can be avoided. A sequential Monte Carlo algorithm in the annealing framework is proposed to conduct Bayesian inference for parameters in DEs. In our numerical experiments, we use examples of ordinary differential equations and delay differential equations to demonstrate the effectiveness of the proposed algorithm. 

关键词Ordinary differential equation Delay differential equation B-spline Bayesian smoothing Conditional effective sample size
DOIarXiv:2002.02571
相关网址查看原文
出处Arxiv
WOS记录号PPRN:11914856
WOS类目Statistics& Probability
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348535
专题数学科学研究所
数学科学研究所_PI研究组(P)_葛淑菲组
作者单位
1.Nankai Univ, Sch Stat & Data Sci, LPMC & KLMDASR, Tianjin, Peoples R China
2.Shanghai Tech Univ, Inst Math Sci, Shanghai, Peoples R China
3.Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
推荐引用方式
GB/T 7714
Wang, Shijia,Ge, Shufei,Doig, Renny,et al. Adaptive semiparametric Bayesian differential equations via sequential Monte Carlo. 2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Shijia]的文章
[Ge, Shufei]的文章
[Doig, Renny]的文章
百度学术
百度学术中相似的文章
[Wang, Shijia]的文章
[Ge, Shufei]的文章
[Doig, Renny]的文章
必应学术
必应学术中相似的文章
[Wang, Shijia]的文章
[Ge, Shufei]的文章
[Doig, Renny]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。