Learning Context-aware Task Reasoning for Efficient Meta-reinforcement Learning
2022-05-02
状态已发表
摘要

Despite recent success of deep network-based Reinforcement Learning (RL), it remains elusive to achieve human-level efficiency in learning novel tasks. While previous efforts attempt to address this challenge using meta-learning strategies, they typically suffer from sampling inefficiency with on-policy RL algorithms or meta-overfitting with off-policy learning. In this work, we propose a novel meta-RL strategy to address those limitations. In particular, we decompose the meta-RL problem into three sub-tasks, task-exploration, task-inference and task-fulfillment, instantiated with two deep network agents and a task encoder. During meta-training, our method learns a task-conditioned actor network for task-fulfillment, an explorer network with a self-supervised reward shaping that encourages task-informative experiences in task-exploration, and a context-aware graph-based task encoder for task inference. We validate our approach with extensive experiments on several public benchmarks and the results show that our algorithm effectively performs exploration for task inference, improves sample efficiency during both training and testing, and mitigates the meta-overfitting problem.

关键词Multitask Learning Deep Reinforcement Learning
DOIarXiv:2003.01373
相关网址查看原文
出处Arxiv
WOS记录号PPRN:13088433
WOS类目Computer Science, Artificial Intelligence ; Statistics& Probability
资助项目Shanghai NSF[
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348506
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_何旭明组
作者单位
ShanghaiTech Univ, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Wang, Haozhe,Zhou, Jiale,He, Xuming. Learning Context-aware Task Reasoning for Efficient Meta-reinforcement Learning. 2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Haozhe]的文章
[Zhou, Jiale]的文章
[He, Xuming]的文章
百度学术
百度学术中相似的文章
[Wang, Haozhe]的文章
[Zhou, Jiale]的文章
[He, Xuming]的文章
必应学术
必应学术中相似的文章
[Wang, Haozhe]的文章
[Zhou, Jiale]的文章
[He, Xuming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。