Neural Free-Viewpoint Performance Rendering under Complex Human-object Interactions
2021-08-03
会议录名称ARXIV
发表状态已发表
DOIarXiv:2108.00362
摘要

4D reconstruction of human-object interaction is critical for immersive VR/AR experience and human activity understanding. Recent advances still fail to recover fine geometry and texture results from sparse RGB inputs, especially under challenging human-object interactions scenarios. In this paper, we propose a neural human performance capture and rendering system to generate both high-quality geometry and photo-realistic texture of both human and objects under challenging interaction scenarios in arbitrary novel views, from only sparse RGB streams. To deal with complex occlusions raised by human-object interactions, we adopt a layer-wise scene decoupling strategy and perform volumetric reconstruction and neural rendering of the human and object. Specifically, for geometry reconstruction, we propose an interaction-aware human-object capture scheme that jointly considers the human reconstruction and object reconstruction with their correlations. Occlusion-aware human reconstruction and robust human-aware object tracking are proposed for consistent 4D human-object dynamic reconstruction. For neural texture rendering, we propose a layer-wise human-object rendering scheme, which combines direction-aware neural blending weight learning and spatial-temporal texture completion to provide high-resolution and photo-realistic texture results in the occluded scenarios. Extensive experiments demonstrate the effectiveness of our approach to achieve high-quality geometry and texture reconstruction in free viewpoints for challenging human-object interactions.

关键词Human-object Interaction Implicit Reconstruction Dynamic Reconstruction Neural Rendering
会议名称29th ACM International Conference on Multimedia (MM)
出版地1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
会议地点null,null,ELECTR NETWORK
会议日期OCT 20-24, 2021
URL查看原文
收录类别CPCI-S
语种英语
资助项目NSFC[
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering
WOS记录号PPRN:12824655
出版者ASSOC COMPUTING MACHINERY
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348501
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_本科生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_许岚组
信息科学与技术学院_PI研究组_汪婧雅组
作者单位
1.ShanghaiTech Univ, Shanghai Engn Res Ctr Intelligent Vis & Imaging, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China
3.Univ Chinese Acad Sci, Shanghai, Peoples R China
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Sun, Guoxing,Chen, Xin,Chen, Yizhang,et al. Neural Free-Viewpoint Performance Rendering under Complex Human-object Interactions[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Sun, Guoxing]的文章
[Chen, Xin]的文章
[Chen, Yizhang]的文章
百度学术
百度学术中相似的文章
[Sun, Guoxing]的文章
[Chen, Xin]的文章
[Chen, Yizhang]的文章
必应学术
必应学术中相似的文章
[Sun, Guoxing]的文章
[Chen, Xin]的文章
[Chen, Yizhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。