消息
×
loading..
Jointing analysis of scATAC-seq datasets using epiConv
2021-01-03
状态已发表
摘要Technical improvement in ATAC-seq makes it possible to profile the chromatin states of single cells at high throughput, but currently no method is available to integrate datasets from multiple sources (different batches of same protocol or multiple experimental protocols). Here we present an algorithm to perform joint analyses on scATAC-seq datasets from multiple sources. In addition to batch correction, we also demonstrate that epiConv is capable of aligning co-assay data (simultaneous profiling of transcriptome and chromatin) onto high-quality ATAC-seq reference or integrating cells in different biological conditions (malignant vs. normal), which increases the statistical power of downstream analyses and reveals hidden hierarchy of malignant cells.
语种英语
DOI10.1101/2020.02.13.947242
相关网址查看原文
出处bioRxiv
收录类别PPRN.PPRN
WOS记录号PPRN:8802081
WOS类目Computer Science, Interdisciplinary Applications
资助项目National Key Research and Development Program of China["2018YFC1004602","NSF 31871332"]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348478
专题生命科学与技术学院
生命科学与技术学院_PI研究组_张力烨组
生命科学与技术学院_PI研究组_孙建龙组
通讯作者Lin, L.; Zhang, L.
作者单位
Shanghai Tech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Lin, L.,Zhang, L.. Jointing analysis of scATAC-seq datasets using epiConv. 2021.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lin, L.]的文章
[Zhang, L.]的文章
百度学术
百度学术中相似的文章
[Lin, L.]的文章
[Zhang, L.]的文章
必应学术
必应学术中相似的文章
[Lin, L.]的文章
[Zhang, L.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1101@2020.02.13.947242.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。