NEPHELE: A Neural Platform for Highly Realistic Cloud Radiance Rendering
2023-03-07
状态已发表
摘要

We have recently seen tremendous progress in neural rendering (NR) advances, i.e., NeRF, for photo-real free-view synthesis. Yet, as a local technique based on a single computer/GPU, even the best-engineered Instant-NGP or i-NGP cannot reach real-time performance when rendering at a high resolution, and often requires huge local computing resources. In this paper, we resort to cloud rendering and present NEPHELE, a neural platform for highly realistic cloud radiance rendering. In stark contrast with existing NR approaches, our NEPHELE allows for more powerful rendering capabilities by combining multiple remote GPUs, and facilitates collaboration by allowing multiple people to view the same NeRF scene simultaneously. Such a combination of NeRF and cloud rendering naturally requires a lightweight, real-time neural renderer with flexible scalability. To this end, analogous to i-NGP, we introduce i-NOLF to employ opacity light fields for ultra-fast neural radiance rendering in a one-query-per-ray manner. We further resemble the Lumigraph with geometry proxies for fast ray querying, and subsequently employ a small MLP to model the local opacity lumishperes for high-quality rendering. We also adopt Perfect Spatial Hashing in i-NOLF to replace the brute-force multi-hashing in the original i-NGP, so as to enhance cache coherence. As a result, our i-NOLF achieves an order of magnitude performance gain in terms of efficiency than i-NGP, especially for the multiuser multi-viewpoint setting under cloud rendering scenarios. We further tailor a task scheduler accompanied by our i-NOLF representation, with a ray-level scheduling design to maintain the resiliency of rendering jobs. We also demonstrate the advance of our methodological design through a comprehensive cloud platform, consisting of a series of cooperated modules, i.e., render farms, task assigner, frame composer, and detailed streaming strategies. Using such a cloud platform compatible with neural rendering, we further showcase the capabilities of our cloud radiance rendering through a series of applications, ranging from cloud VR/AR rendering, to sharing NeRF assets between multiple users and allowing NeRF assets to freely assemble into a new scene.

关键词Neural Rendering Cloud Rendering
DOIarXiv:2303.04086
相关网址查看原文
出处Arxiv
WOS记录号PPRN:44294679
WOS类目Computer Science, Hardware& Architecture ; Computer Science, Software Engineering
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348377
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_殷树组
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
信息科学与技术学院_PI研究组_许岚组
作者单位
ShanghaiTech Univ, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Luo, Haimin,Zhang, Siyuan,Zhao, Fuqiang,et al. NEPHELE: A Neural Platform for Highly Realistic Cloud Radiance Rendering. 2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Luo, Haimin]的文章
[Zhang, Siyuan]的文章
[Zhao, Fuqiang]的文章
百度学术
百度学术中相似的文章
[Luo, Haimin]的文章
[Zhang, Siyuan]的文章
[Zhao, Fuqiang]的文章
必应学术
必应学术中相似的文章
[Luo, Haimin]的文章
[Zhang, Siyuan]的文章
[Zhao, Fuqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。