ShanghaiTech University Knowledge Management System
Memory-like Adaptive Modeling Multi-Agent Learning System | |
2023-04-04 | |
状态 | 已发表 |
摘要 | We propose an adaptive multi-agent clustering recognition system that can be self-supervised driven, based on a temporal sequences continuous learning mechanism with adaptability. The system is designed to use some different functional agents to build up a connection structure to improve adaptability to cope with environmental diverse demands, by predicting the input of the agent to drive the agent to achieve the act of clustering recognition of sequences using the traditional algorithmic approach. Finally, the feasibility experiments of video behavior clustering demonstrate the feasibility of the system to cope with dynamic situations. Our work is placed herefootnote{https://github.com/qian-git/MAMMALS}. |
关键词 | self-super vision adaptive systems continuous learning |
DOI | arXiv:2212.07646 |
相关网址 | 查看原文 |
出处 | Arxiv |
WOS记录号 | PPRN:35880816 |
WOS类目 | Computer Science, Information Systems ; Computer Science, Software Engineering |
资助项目 | Strategic Priority Research Program of the Chinese Academy of Sciences[ |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348345 |
专题 | 信息科学与技术学院_博士生 物质科学与技术学院_硕士生 |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Microsyst& Informat Technol, Shanghai 200050, Peoples R China 2.Shanghai tech Univ, Shanghai 201210, Peoples R China 3.Neu Helium Co Ltd, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Qian, Xingyu,Yuemaier, Aximu,Liang, Longfei,et al. Memory-like Adaptive Modeling Multi-Agent Learning System. 2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。